
CS3230 – Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 4a: Lower Bound for Comparison-Based Sorting

Sorting

• Input: an array ଵ ଶ of elements.

• Goal: Sort the elements in in non-decreasing order.
• A permutation ଵ

ᇱ
ଶ
ᇱ

ᇱ of such that ଵ

ᇱ
ଶ
ᇱ

ᇱ .

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

Sorting

• Input: an array ଵ ଶ of elements.

• Goal: Sort the elements in in non-decreasing order.
• A permutation ଵ

ᇱ
ଶ
ᇱ

ᇱ of such that ଵ

ᇱ
ଶ
ᇱ

ᇱ .

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

Worst-case time complexity

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛 log 𝑛

𝑂 𝑛 log 𝑛

• Intuition: should be the best possible bound attainable.

Sorting

• Input: an array ଵ ଶ of elements.

• Goal: Sort the elements in in non-decreasing order.
• A permutation ଵ

ᇱ
ଶ
ᇱ

ᇱ of such that ଵ

ᇱ
ଶ
ᇱ

ᇱ .

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

Worst-case time complexity

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛 log 𝑛

𝑂 𝑛 log 𝑛

• Intuition: should be the best possible bound attainable.
• How to turn this intuition into an actual lower bound proof?
• There are too many ways of designing a sorting algorithm.

Sorting

• Input: an array ଵ ଶ of elements.

• Goal: Sort the elements in in non-decreasing order.
• A permutation ଵ

ᇱ
ଶ
ᇱ

ᇱ of such that ଵ

ᇱ
ଶ
ᇱ

ᇱ .

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

Worst-case time complexity

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛 log 𝑛

𝑂 𝑛 log 𝑛

• Intuition: should be the best possible bound attainable.
• How to turn this intuition into an actual lower bound proof?
• There are too many ways of designing a sorting algorithm.

We will restrict our attention to a certain class of algorithms.

Comparison-based sorting

• Comparison-based algorithms:
• Elements can only be compared with each other:

• <, ≤, =, >, ≥

• No other information of the elements can be used.

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

All of them are comparison-based.

Comparison-based sorting

• Comparison-based algorithms:
• Elements can only be compared with each other:

• <, ≤, =, >, ≥

• No other information of the elements can be used.

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

All of them are comparison-based.

𝐈𝐟 (𝐴 𝑖 < 𝐴 𝑗), 𝐭𝐡𝐞𝐧 Do some work

𝐈𝐟 (𝐴 𝑖 = 𝐴 𝑗), 𝐭𝐡𝐞𝐧 Do some work

𝐈𝐟 (𝐴 𝑖 + 𝐴 𝑗 = 𝐴 𝑘), 𝐭𝐡𝐞𝐧 Do some work

𝐈𝐟 (𝐴 𝑖 = 𝑘), 𝐭𝐡𝐞𝐧 Do some work

𝐈𝐟 (𝐴 𝑖 is odd), 𝐭𝐡𝐞𝐧 Do some work

𝐈𝐟 (the 𝑗th bit of 𝐴 𝑖 is 1), 𝐭𝐡𝐞𝐧 Do some work

Allowed Not allowed

Comparison-based sorting

• Comparison-based algorithms:
• Elements can only be compared with each other:

• <, ≤, =, >, ≥

• No other information of the elements can be used.

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

All of them are comparison-based.

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛 log 𝑛

𝑂 𝑛 log 𝑛

Comparison-based sorting

• Comparison-based algorithms:
• Elements can only be compared with each other:

• <, ≤, =, >, ≥

• No other information of the elements can be used.

Examples:
• Insertion sort
• Selection sort
• Merge sort
• Heap sort
• Quick sort

All of them are comparison-based.

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛ଶ

𝑂 𝑛 log 𝑛

𝑂 𝑛 log 𝑛

Merge sort and heap sort are asymptotically optimal!

Decision trees

• The proof of the theorem uses decision trees.

Interesting job?

no

Take the job

yesno

High pay?

Long work hours?

Don’t take the job Take the job Don’t take the job

no

yes

yes

Decision trees

• A decision tree is a rooted tree.
• Start from the root.
• At every vertex, a question is asked.
• Depending on the answer, a child is chosen.
• At a leaf, a decision is taken.

Decision trees

• A decision tree is a rooted tree.
• Start from the root.
• At every vertex, a question is asked.
• Depending on the answer, a child is chosen.
• At a leaf, a decision is taken.

• Any comparison-based algorithm can be modeled using a decision tree:
• A comparison A question asked at a node.
• Program state depends on the result of the comparison Chosen child depends on the

answer to the question.
• Output of the algorithm Decision at a leaf.

A permutation (𝑎ଵ
ᇱ , 𝑎ଶ

ᇱ , … , 𝑎
ᇱ) of 𝐴

An example

• A comparison-based algorithm for sorting ଵ ଶ ଷ .

ଵ ଶ

ଶ ଷ

ଵ ଶ ଷ

ଵ ଷ

ଵ ଷ ଶ ଷ ଵ ଶ

ଵ ଷ

ଶ ଵ ଷ

ଶ ଷ

ଶ ଷ ଵ ଷ ଶ ଵ

noyes

yes yesno no

yes noyes no

An example

• A comparison-based algorithm for sorting ଵ ଶ ଷ .

ଵ ଶ

ଶ ଷ

ଵ ଶ ଷ

ଵ ଷ

ଵ ଷ ଶ ଷ ଵ ଶ

ଵ ଷ

ଶ ଵ ଷ

ଶ ଷ

ଶ ଷ ଵ ଷ ଶ ଵ

noyes

yes yesno no

yes noyes no

Worst-case running time worst-case number of comparisons height of the tree

Proof of the theorem

Proof:
• Model the algorithm as a decision tree, which is a binary tree with at least leaves:

• Each permutation is a possible answer.

• The height of the binary tree is at least .

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .

Proof of the theorem

Proof:
• Model the algorithm as a decision tree, which is a binary tree with at least leaves:

• Each permutation is a possible answer.

• The height of the binary tree is at least .

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .

Stirling's approximation
https://en.wikipedia.org/wiki/Stirling%27s_approximation

Question 1 @ VisuAlgo online quiz

• Is the following claim true or false?

There exists a comparison-based sorting algorithm that can
sort any -element array using at most comparisons.

Question 2 @ VisuAlgo online quiz

Input: sorted arrays .

Goal: Merge the sorted arrays into one sorted array of length .

Question: What is a tight lower bound of the worst-case running time
for comparison-based algorithms for this task?
•

•

•

•

211682 1913117

2119161311872

Non-comparison sorts

Question: Can we bypass the lower bound
by an algorithm that is not comparison-based?

Non-comparison sorts

Suppose each element in the array belongs to the range .

Question: Can we bypass the lower bound
by an algorithm that is not comparison-based?

• For all , compute the number of appearances of in .
• Set the initial ଵ entries of to be .
• Set the next ଶ entries of to be .
• Set the next ଷ entries of to be .
•

Exercise: Show that the algorithm can be implemented to finish in time.

Acknowledgement

• The slides are modified from previous editions of this course and
similar course elsewhere.

• List of credits:
• Diptarka Chakraborty
• Yi-Jun Chang
• Erik Demaine
• Steven Halim
• Sanjay Jain
• Wee Sun Lee
• Charles Leiserson
• Hon Wai Leong
• Wing-Kin Sung

