CS3230 — Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 4a: Lower Bound for Comparison-Based Sorting

Sorting

* Input: an array A = (a4, a,, ..., a,) of elements.

* Goal: Sort the elements in A in non-decreasing order.

* A permutation (ag,asy, ...,ay) of Asuchthat a; < aj), < - < a,,.

Examples:

Insertion sort
Selection sort
Merge sort
Heap sort
Quick sort

Sorting

Worst-case time complexity

* Input: an array A = (a4, a,, ..., a,) of elements. Examples:
* Insertionsort 0(n?
e Goal: Sort the elements in A in non-decreasing order. * Selectionsort 0(n*)

* Mergesort O(nlogn)
* Heap sort O(nlogn)
* Quick sort 0(n?)

* A permutation (ag,asy, ...,ay) of Asuchthat a; < aj), < - < a,,.

* Intuition: O(nlogn) should be the best possible bound attainable.

Sorting

Worst-case time complexity

* Input: an array A = (a4, a,, ..., a,) of elements. Examples:
* Insertionsort 0(n?
e Goal: Sort the elements in A in non-decreasing order. * Selectionsort 0(n*)

* Mergesort O(nlogn)
* Heap sort O(nlogn)
* Quick sort 0(n?)

* A permutation (ag,asy, ...,ay) of Asuchthat a; < aj), < - < a,,.

* Intuition: O(nlogn) should be the best possible bound attainable.
* How to turn this intuition into an actual lower bound proof?
* There are too many ways of designing a sorting algorithm.

Sorting

Worst-case time complexity

* Input: an array A = (a4, a,, ..., a,) of elements. Examples:

* Goal: Sort the elements in A in non-decreasing order.
* A permutation (ag,asy, ...,ay) of Asuchthat a; < aj), < - < a,,.

* Intuition: O(nlogn) should be the best possible bound attainable.

* How to turn this intuition into an actual lower bound proof?
* There are too many ways of designing a sorting algorithm.

We will restrict our attention to a certain class of algorithms.

Insertion sort 0(n?)
Selection sort 0(n?)
Merge sort O(nlogn)
Heap sort O(nlogn)
Quick sort 0(n?)

Comparison-based sorting

All of them are comparison-based.

* Comparison-based algorithms: Examples:
* Elements can only be compared with each other: * Insertion sort
< < = >, > * Selection sort
* No other information of the elements can be used. * Merge sort

* Heap sort
* Quick sort

Comparison-based sorting

* Comparison-based algorithms:

* Elements can only be compared with each other:
° <) < = >; 2

—_)

* No other information of the elements can be used.

All of them are comparison-based.

Examples:

* |nsertion sort
e Selection sort
* Merge sort

* Heap sort

* Quick sort

Allowed Not allowed
If (A[i] < A[j]), then { Do some work } If (A[i] + A[j] = A[k]), then { Do some work }
If (A[i] = Alj]), then { Do some work } If (A[i] = k), then { Do some work }

If (A[i] is odd), then { Do some work }
If (the jth bit of A[i] is 1), then { Do some work }

Comparison-based sorting

All of them are comparison-based.

* Comparison-based algorithms: Examples:
* Elements can only be compared with each other: * Insertionsort 0(n?)
e <L <, = >, > * Selectionsort 0(n*)
* No other information of the elements can be used. * Mergesort O(nlogn)
* Heap sort O(nlogn)
* Quick sort 0(n?)

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is Q(nlogn).

Comparison-based sorting

All of them are comparison-based.

* Comparison-based algorithms: Examples:
* Elements can only be compared with each other: * Insertionsort 0(n?)
e <L <, = >, > * Selectionsort 0(n*)
* No other information of the elements can be used. * Mergesort O(nlogn)
* Heap sort O(nlogn)
* Quick sort 0(n?)

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is Q(nlogn).

Merge sort and heap sort are asymptotically optimal!

Decision trees

* The proof of the theorem uses decision trees.

High pay?
yes no
Long work hours? Interesting job?

Don’t take the job I Take the job I Take the job I Don’t take the job I

Decision trees

* A decision tree is a rooted tree.
e Start from the root.
* At every vertex, a question is asked.
* Depending on the answer, a child is chosen.
* At aleaf, a decision is taken.

Decision trees

* A decision tree is a rooted tree.
e Start from the root.
* At every vertex, a question is asked.
* Depending on the answer, a child is chosen.
* At aleaf, a decision is taken.

* Any comparison-based algorithm can be modeled using a decision tree:
* A comparison <= A guestion asked at a node.

* Program state depends on the result of the comparison <= Chosen child depends on the
answer to the question.

e Output of the algorithm «— Decision at a leaf.

A permutation (aq,aj, ..., a;) of A

An example

* A comparison-based algorithm for sorting A = (a4, a,, as).

yes no

yes no yes no

ay, a,, s a, as, a; as,a, a, a,,aq,as a,, as, a4 as, a,, aq

An example

[Worst—case running time = worst-case number of comparisons = height of the tree]

yes no

yes no yes no

ay, a,, s a, as, a; as,a, a, a,,aq,as a,, as, a4 as, a,, aq

Proof of the theorem

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is (nlogn).

Proof:

* Model the algorithm as a decision tree, which is a binary tree with at least n! leaves:
* Each permutation is a possible answer.

* The height of the binary tree is at least log(n!).

Proof of the theorem

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is (nlogn).

Proof:

* Model the algorithm as a decision tree, which is a binary tree with at least n! leaves:
* Each permutation is a possible answer.

* The height of the binary tree is at least log(n!).

log(n!) € nlogn —nloge + O(logn) € Q(nlogn)

Stirling's approximation
https://en.wikipedia.org/wiki/Stirling%27s approximation

Question 1 @ VisuAlgo online quiz

* |s the following claim true or false?

There exists a comparison-based sorting algorithm that can
sort any 5-element array using at most 6 comparisons.

Question 2 @ VisuAlgo online quiz

Input: k sorted arrays A;[1..n],A,[1..n], ..., A [1..n].

Goal: Merge the k sorted arrays into one sorted array of length kn.

Question: What is a tight lower bound of the worst-case running time
for comparison-based algorithms for this task?

* Q(kn)
* Q(knlogk) 2 | 8 |16 |21 7 [11]13 119

* Q(knlogn)
< () Exfiv'y

Non-comparison sorts

Question: Can we bypass the Q(nlogn) lower bound
by an algorithm that is not comparison-based?

Non-comparison sorts

Question: Can we bypass the Q(nlogn) lower bound
by an algorithm that is not comparison-based?

Suppose each element in the array 4 belongs to the range {1,2, ..., k}.

CountingSort(4)

* Foralli € {1,2,..,k}, compute count; = the number of appearances of i in A.
* Set the initial count, entries of A to be 1.

* Set the next count, entries of A to be 2.

* Set the next count; entries of A to be 3.

Exercise: Show that the algorithm can be implemented to finish in O(n + k) time.

Acknowledgement

* The slides are modified from previous editions of this course and
similar course elsewhere.

e List of credits:

* Diptarka Chakraborty
Yi-Jun Chang
Erik Demaine
Steven Halim
Sanjay Jain
Wee Sun Lee
Charles Leiserson
Hon Wai Leong
Wing-Kin Sung

