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Lecture 4a: Lower Bound for Comparison-Based Sorting
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• Intuition: should be the best possible bound attainable.
• How to turn this intuition into an actual lower bound proof?
• There are too many ways of designing a sorting algorithm.

We will restrict our attention to a certain class of algorithms.
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𝐈𝐟 (𝐴 𝑖 < 𝐴 𝑗 ), 𝐭𝐡𝐞𝐧  Do some work 
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Merge sort and heap sort are asymptotically optimal!



Decision trees

• The proof of the theorem uses decision trees.
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• A decision tree is a rooted tree.
• Start from the root.
• At every vertex, a question is asked.
• Depending on the answer, a child is chosen.
• At a leaf, a decision is taken.



Decision trees

• A decision tree is a rooted tree.
• Start from the root.
• At every vertex, a question is asked.
• Depending on the answer, a child is chosen.
• At a leaf, a decision is taken.

• Any comparison-based algorithm can be modeled using a decision tree:
• A comparison A question asked at a node.
• Program state depends on the result of the comparison Chosen child depends on the 

answer to the question. 
• Output of the algorithm Decision at a leaf.
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Proof of the theorem

Proof:
• Model the algorithm as a decision tree, which is a binary tree with at least leaves: 

• Each permutation is a possible answer.

• The height of the binary tree is at least .

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .
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Proof:
• Model the algorithm as a decision tree, which is a binary tree with at least leaves: 

• Each permutation is a possible answer.

• The height of the binary tree is at least .

Theorem: The worst-case time complexity of any
comparison-based sorting algorithm is .

Stirling's approximation
https://en.wikipedia.org/wiki/Stirling%27s_approximation



Question 1 @ VisuAlgo online quiz

• Is the following claim true or false?

There exists a comparison-based sorting algorithm that can 
sort any -element array using at most comparisons.



Question 2 @ VisuAlgo online quiz

Input: sorted arrays .

Goal: Merge the sorted arrays into one sorted array of length . 

Question: What is a tight lower bound of the worst-case running time 
for comparison-based algorithms for this task?
•

•

•

•

211682 1913117

2119161311872



Non-comparison sorts

Question: Can we bypass the lower bound 
by an algorithm that is not comparison-based? 



Non-comparison sorts

Suppose each element in the array belongs to the range .

Question: Can we bypass the lower bound 
by an algorithm that is not comparison-based? 

• For all , compute  the number of appearances of in .
• Set the initial ଵ entries of to be .
• Set the next ଶ entries of to be .
• Set the next ଷ entries of to be .
•

Exercise: Show that the algorithm can be implemented to finish in time.
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