CS3230 – Design and Analysis of Algorithms (S1 AY2024/25)

Lecture 4b: Average-Case Analysis of Quick Sort

• Input: an array A[1..n] of n elements.

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

- Recursion:
 - Recursively sort A_S and A_L .

• Input: an array A[1..n] of n elements.

There are various ways to implement this part.

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

• Recursion:

• Recursively sort A_S and A_L .

It is common to choose the <u>first element</u> as the pivot: **pivot** $\leftarrow A[1]$.

• Input: an array A[1..n] of n elements.

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

- Recursion:
 - Recursively sort A_S and A_L .

• Input: an array A[1..n] of n elements.

VisuAlgo (Quick sort): <u>https://visualgo.net/en/sorting?mode=Quick</u>

Quick sort T(n) time

• Input: an array A[1..n] of n elements.

Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

• Recursion:

• Recursively sort A_S and A_L .

T(j-1) + T(n-j) time, if **pivot** is the *j*th smallest element.

Assume that all elements are distinct.

VisuAlgo (Quick sort): <u>https://visualgo.net/en/sorting?mode=Quick</u>

 $\Theta(n)$ time

Recurrence

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn

Worst-case running time

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn
- Intuition: Worst case seems to be j = 1 or j = n.
 - $T(n) = T(0) + T(n-1) + cn \in \Theta(n^2)$
 - $T(n) \in \Theta(n^2)$

VisuAlgo (Worst-case analysis of quick sort): <u>https://visualgo.net/en/recursion?example=QuickSort</u>

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn

$$T(n) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$$

$$T(n) \in \Theta(n^2)$$

- Guess $T(r) \leq c_1 r^2$ and prove it by induction.
- **Base case:** T(0) = 0. Just simply not invoke any recursive call with n = 0.

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn

$$\leq \max_{j \in [n]} \{T(j-1) + T(n-j) +$$

cn

$$T(n) \in \Theta(n^2)$$

- Guess $T(r) \leq c_1 r^2$ and prove it by induction.
- **Base case:** T(0) = 0.

T(n)

• Inductive step:
$$(n \ge 1)$$

 $T(n) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$
 $\le \max_{j \in [n]} \{c_1(j^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}$
 $= \max_{j \in [n]} \{c_1(n^2 + 1 - 2j(n+1-j)) + cn\}$

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn

$$\leq \max_{j \in [n]} \{T(j-1) + T(n-j) +$$

$$T(n) \in \Theta(n^2)$$

cn

• Guess $T(r) \leq c_1 r^2$ and prove it by induction.

• **Base case:**
$$T(0) = 0$$
.

T(n)

• Inductive step:
$$(n \ge 1)$$

 $T(n) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$
 $\le \max_{j \in [n]} \{c_1(j^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}$
 $= \max_{j \in [n]} \{c_1(n^2 + 1 - 2j(n + 1 - j)) + cn\}$
 $\le c_1(n^2 - 2n + 1) + cn = c_1n^2 + cn - c_1(2n - 1) \le \cdots$
 $2j(n+1-j)$ is smallest when $j = 1$ or $j = n$.

- Suppose **pivot** is the *j*th smallest element.
 - T(n) = T(j-1) + T(n-j) + cn

• **Goal:**
$$T(n) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$$

$$T(n) \in \Theta(n^2)$$

• Guess
$$T(r) \le c_1 r^2$$
 and prove it by induction.
• Base case: $T(0) = 0$.
• Inductive step: $(n \ge 1)$
 $T(n) \le \max_{\substack{j \in [n]}} \{T(j-1) + T(n-j) + cn\}$
 $\le \max_{\substack{j \in [n]}} \{c_1(j^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}$
 $= \max_{\substack{j \in [n]}} \{c_1(n^2 + 1 - 2j(n + 1 - j)) + cn\}$ Select c_1 so that $\forall (n \ge 1), cn \le c_1(2n - 1)$.
 $\le c_1(n^2 - 2n + 1) + cn = c_1n^2 + cn - c_1(2n - 1) \le c_1n^2$

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.
- Assume all numbers are distinct.
- Let $a_1 < a_2 < \cdots < a_n$ be the input numbers in the sorted order.
- Fixing (a_1, a_2, \dots, a_n) , the input array A can be described by a **permutation** π of (a_1, a_2, \dots, a_n) .

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.
- Assume all numbers are distinct.
- Let $a_1 < a_2 < \cdots < a_n$ be the input numbers in the sorted order.
- Fixing (a_1, a_2, \dots, a_n) , the input array A can be described by a **permutation** π of (a_1, a_2, \dots, a_n) .
- The execution of the quick sort algorithm:

It depends only on π.
It is independent of the actual values of (a₁, a₂, ..., a_n).

• The **average-case** running time A(n) is the average running time over all inputs of size n.

There are n! permutations of $(a_1, a_2, ..., a_n)$.

$$A(n) = \sum_{\pi} \frac{1}{n!} \cdot (\text{running time of quick sort on } \pi)$$

The summation is over all permutations π of $(a_1, a_2, ..., a_n)$.

The execution of the quick sort algorithm:

- It depends only on π .
- It is independent of the actual values of $(a_1, a_2, ..., a_n)$.

Observation: A(n) is also the expected running time when the permutation π is chosen uniformly at random.

• The **average-case** running time A(n) is the average running time over all inputs of size n.

Each permutation is chosen with a probability of
$$\frac{1}{n!}$$
.

$$A(n) = \sum_{\pi} \frac{1}{n!} \cdot \text{(running time of quick sort on } \pi\text{)}$$

The summation is over all permutations π of $(a_1, a_2, ..., a_n)$.

The execution of the quick sort algorithm:

- It depends only on π .
- It is independent of the actual values of $(a_1, a_2, ..., a_n)$.

If $pivot = a_j$, then the elements in the two recursive calls are as follows:

- $A_S: a_1, a_2, \dots, a_{j-1}$
- $A_L: a_{j+1}, a_{j+2}, \dots, a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

• $\forall (j \in [n]), \Pr[\mathsf{pivot} = a_j] = \frac{1}{n}$.

If $pivot = a_j$, then the elements in the two recursive calls are as follows:

- $A_S: a_1, a_2, \dots, a_{j-1}$
- $A_L: a_{j+1}, a_{j+2}, \dots, a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

• $\forall (j \in [n]), \Pr[\text{pivot} = a_j] = \frac{1}{n}$.

Reason:

- The **pivot** is selected as the first element: $pivot \leftarrow A[1]$.
- If π is uniformly random, then each element has equal chance to be the first element.

If **pivot** = a_j, then the elements in the two recursive calls are as follows:
A_S: a₁, a₂, ..., a_{j-1}
A_L: a_{j+1}, a_{j+2}, ..., a_n

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

• $\forall (j \in [n]), \Pr[\text{pivot} = a_j] = \frac{1}{n}$.

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_S : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability.
- Recursive call on A_L : Each permutation of $(a_{j+1}, a_{j+2}, ..., a_n)$ appears with equal probability.

If **pivot** = a_j , then the elements in the two recursive calls are as follows: • $A_S: a_1, a_2, ..., a_{j-1}$

• $A_L: a_{j+1}, a_{j+2}, \dots, a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

• $\forall (j \in [n]), \Pr[\mathsf{pivot} = a_j] = \frac{1}{n}.$

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_S : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability.
- Recursive call on A_L : Each permutation of $(a_{j+1}, a_{j+2}, ..., a_n)$ appears with equal probability.

Reason:

• If **pivot** = a_j , then the partition algorithm never compares any two elements in $(a_1, a_2, ..., a_{j-1})$.

If **pivot** = a_j , then the elements in the two recursive calls are as follows: • $A_S: a_1, a_2, ..., a_{j-1}$

• $A_L: a_{j+1}, a_{j+2}, \dots, a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

• $\forall (j \in [n]), \Pr[\text{pivot} = a_j] = \frac{1}{n}.$

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_S : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability.
- Recursive call on A_L : Each permutation of $(a_{j+1}, a_{j+2}, ..., a_n)$ appears with equal probability. \leftarrow Similar

Reason:

• If **pivot** = a_j , then the partition algorithm never compares any two elements in $(a_1, a_2, ..., a_{j-1})$.

At the start, the input permutation π restricted to $(a_1, a_2, ..., a_{j-1})$ is uniformly random.

At the end, the permutation of $(a_1, a_2, ..., a_{j-1})$ is still uniformly random.

• Suppose $X = (x_1, x_2, x_3)$ is a uniformly random permutation of (1, 2, 3).

 $X = (x_1, x_2, x_3)$ Swap x_2 and x_3 .

Still uniformly random:

- $(1, 2, 3) \to (1, 3, 2)$
- $(1,3,2) \to (1,2,3)$
- $(2, 1, 3) \rightarrow (2, 3, 1)$
- $(2,3,1) \rightarrow (2,1,3)$
- $(3, 1, 2) \rightarrow (3, 2, 1)$
- $(3, 2, 1) \rightarrow (3, 1, 2)$

No comparison is made.

$$X = (x_1, x_2, x_3)$$

Swap x_2 and x_3 if $x_2 > x_3$.

Not uniformly random:

- $(1, 2, 3) \rightarrow (1, 2, 3)$
- $(1,3,2) \rightarrow (1,2,3)$
- $(2,1,3) \rightarrow (2,1,3)$
- $(2,3,1) \rightarrow (2,1,3)$
- $(3, 1, 2) \rightarrow (3, 1, 2)$
- $(3, 2, 1) \rightarrow (3, 1, 2)$

A comparison is made.

Recurrence

If **pivot** = a_i , then the elements in the two recursive calls are as follows:

- *A_S*: *a*₁, *a*₂, ..., *a*_{j-1} *A_L*: *a*_{j+1}, *a*_{j+2}, ..., *a_n*

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

Observation 2: The permutations for both recursive calls are also uniformly random.

Conditioning on **pivot** = a_i , the expected running time of the two recursive calls.

$$A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} \left[A(j-1) + A(n-j) + cn \right] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)$$

$$A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)$$

• $n \cdot A(n) = cn^2 + 2 \cdot \sum_{j=0}^{n-1} A(j)$
• $(n-1) \cdot A(n-1) = c(n-1)^2 + 2 \cdot \sum_{j=0}^{n-2} A(j)$

$$A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)$$

• $n \cdot A(n) = cn^2 + 2 \cdot \sum_{j=0}^{n-1} A(j)$
• $(n-1) \cdot A(n-1) = c(n-1)^2 + 2 \cdot \sum_{j=0}^{n-2} A(j)$
• $n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)$

$$A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)$$

• $n \cdot A(n) = cn^2 + 2 \cdot \sum_{j=0}^{n-1} A(j)$
• $(n-1) \cdot A(n-1) = c(n-1)^2 + 2 \cdot \sum_{j=0}^{n-2} A(j)$
• $n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)$
• $n \cdot A(n) - (n+1) \cdot A(n-1) = (n \cdot A(n) - (n-1) \cdot A(n-1)) - 2A(n-1) = c(2n-1)$

$$A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)$$

• $n \cdot A(n) = cn^{2} + 2 \cdot \sum_{j=0}^{n-1} A(j)$
• $(n-1) \cdot A(n-1) = c(n-1)^{2} + 2 \cdot \sum_{j=0}^{n-2} A(j)$
• $n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)$
• $n \cdot A(n) - (n+1) \cdot A(n-1) = (n \cdot A(n) - (n-1) \cdot A(n-1)) - 2A(n-1) = c(2n-1)$
• Dividing by $n(n+1)$
 $\frac{A(n)}{n+1} - \frac{A(n-1)}{n} = \frac{c(2n-1)}{n(n+1)} < \frac{c(2n+2)}{n(n+1)} = \frac{2c}{n}$

$$\frac{A(n)}{n+1} < 2c \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + \frac{1}{2}\right) + \frac{A(1)}{2}$$

 $A(n) \in O(n \log n)$

$$\frac{A(n)}{n+1} - \frac{A(n-1)}{n} < \frac{2c}{n}$$

$$\frac{A(n-1)}{n} - \frac{A(n-2)}{n-1} < \frac{2c}{n-1}$$

$$\frac{A(n-2)}{n-1} - \frac{A(n-3)}{n-2} < \frac{2c}{n-2}$$

$$\vdots$$

$$\frac{A(2)}{3} - \frac{A(1)}{2} < \frac{2c}{2}$$

Question 3 @ VisuAlgo online quiz

Who is the **Master of Algorithms** pictured below?

- Tony Hoare
- John Hopcroft
- Ronald Rivest
- Andrew Yao

Desirable properties of sorting algorithms

- Small running time:
 - Worst case.
 - Average case.
- Comparison-based algorithms.
- What else?

Stable sorting

- **Stable** sorting algorithm:
 - For elements of equal values, the original ordering is preserved.
 - If A[i] = A[j] and i < j, then A[i] must be before A[j] in the output.

Stable sorting

- **Stable** sorting algorithm:
 - For elements of equal values, the original ordering is preserved.
 - If A[i] = A[j] and i < j, then A[i] must be before A[j] in the output.
 - Insertion sort is stable.
 - Merge sort is stable if implemented properly.
 - Most of the implementations of quick sort are not stable.

In-place sorting

• A sorting algorithm is **in-place** if it uses very little extra memory besides the input array.

In-place sorting

- A sorting algorithm is **in-place** if it uses very little extra memory besides the input array.
 - Insertion sort uses only O(1) extra memory.
 - Merge sort uses O(n) extra memory.
 - Quicksort uses $O(\log n)$ extra memory if implemented properly.

After partitioning, the sub-array with the fewer elements is recursively sorted first.

Desirable properties of sorting algorithms

- Small running time:
 - Worst case.
 - Average case.
- Additional desirable properties:
 - Comparison-based.
 - Stable.
 - In-place.

They are highly dependent on the specific way the algorithm is implemented.

https://en.wikipedia.org/wiki/Sorting algorithm#Comparison of algorithms

Acknowledgement

• The slides are modified from previous editions of this course and similar course elsewhere.

• List of credits:

- Surender Baswana
- Arnab Bhattacharya
- Diptarka Chakraborty
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Wing-Kin Sung