CS3230 – Design and Analysis of Algorithms

(S1 AY2024/25)

Letwe Ab Austase Gas Analysis of Quick Sert (S1 AY2024/25)

Lecture 4b: Average-Case Analysis of Quick Sort

• Input: an array $A[1..n]$ of n elements.

• Partition:

- Select a number in $A[1..n]$ as the pivot.
- Rearrange the array to satisfy the condition: $A = \lceil . \rceil$

- Recursion:
	- Recursively sort A_S and A_L .

• Input: an array $A[1..n]$ of n elements.

• Partition:

- Select a number in $A[1..n]$ as the pivot.
- Rearrange the array to satisfy the condition: $A = \lceil . \rceil$

- Recursion:
	- Recursively sort A_S and A_L .

It is common to choose the <u>first element</u> as the pivot: **pivot** ← $A[1]$.

• Input: an array $A[1..n]$ of n elements.

• Partition:

- Select a number in $A[1..n]$ as the pivot.
- Rearrange the array to satisfy the condition: $A = \lceil$

- Recursion:
	- Recursively sort A_S and A_L .

• Input: an array $A[1..n]$ of n elements.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Quick sort $T(n)$ time

• Input: an array $A[1..n]$ of n elements.

• Partition: • Select a number in $A[1..n]$ as the **pivot**. • Rearrange the array to satisfy the condition: $A = \lceil . \rceil$. ∀ ∈ ௌ A_S A_L
 $\dots \dots \dots \dots \text{pivot}$ A_L
 $\downarrow x \leq \text{pivot}$ $\forall x \in A_L, x \geq \text{pivot}$ S and H_L A
 $\begin{array}{ccc}\n & A_L \\
 & \dots & \dots & \dots & \dots \\
 & \forall x \in A_L, x \geq \text{pivot}\n\end{array}$ $\begin{cases} 4_L \\ \dots \\ x \ge \text{pivot} \end{cases}$ $\Theta(n)$ time $\forall x \in A_S, x \leq$ pivot an array $A[1, n]$ of n elements.

on:

ct a number in $A[1, n]$ as the pivot.

 $\begin{array}{ccc}\n & A_S & A_L \\
\hline\n\Theta(n) \text{ time} & \forall x \in A_{s,x} \leq \text{pivot}} & \dots & \dots & \dots & \dots \\
 & & \Theta(n) \text{ time} & \forall x \in A_{s,x} \leq \text{pivot}} & \forall x \in A_{L,x} \geq \text{pi} \\
 & & \text{for } X \in A_{L,x} \geq \text{point} & \forall x$

• Recursion:

• Recursively sort A_S and A_L .

Assume that all elements are distinct.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Recurrence

- **Recurrence**
• Suppose **pivot** is the *j*th smallest element.
• $T(n) = T(j-1) + T(n-j) + cn$
	-

Worst-case running time

- -
- Intuition: Worst case seems to be $j = 1$ or $j = n$.
	- $T(n) = T(0) + T(n-1) + cn \in \Theta(n^2)$
	- $T(n) \in \Theta(n^2)$

VisuAlgo (Worst-case analysis of quick sort): https://visualgo.net/en/recursion?example=QuickSort

A more formal proof A more formal proof
• Suppose **pivot** is the *j*th smallest element.
• $T(n) = T(j-1) + T(n-j) + cn$ more formal proof
ppose pivot is the *j*th smallest element.

• $T(n) = T(j-1) + T(n-j) + cn$

• Ouess $T(r) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$ $\triangleright \begin{array}{|l|} \hline T(n) \end{array}$

• Guess $T(r) \le c_1 r^2$ and prove it by induction.

• Base case: \overline **The proper proof**
 Phonon proper proof
 Phonon Equally Set in Smallest element.
 Phonon Equally 1 $T(n) = T(j-1) + T(n-j) + cn$
 Phonon Equally 1 $T(n) \leq \frac{m}{f(n)}[T(j-1) + T(n-j) + cn]$
 C Guess $T(r) \leq c_1 r^2$ and prove it by indu

- -

$$
\therefore \int T(n) \le \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}
$$

$$
\left(T(n) \in \Theta(n^2) \right)
$$

- Guess $T(r) \leq c_1 r^2$ and prove it by induction.
-

A more formal proof A more formal proof
• Suppose **pivot** is the *j*th smallest element.
• $T(n) = T(j-1) + T(n-j) + cn$

- -

• Goal:
$$
T(n)
$$

$$
\leq \max_{j\in[n]}\{T(j-1)+T(n-j)+cn\}
$$

$$
\left(T(n) \in \Theta(n^2) \right)
$$

Guess $T(r) \leq c_1 r^2$ and prove it by induction.

• **Base case:**
$$
T(0) = 0
$$
.

more formal proof

\nuppose pivot is the *j*th smallest element.

\n•
$$
T(n) = T(j-1) + T(n-j) + cn
$$

\nioal:
$$
T(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}
$$
 >
$$
T(n) \in \Theta(n^2)
$$

\n•
$$
Guess T(r) \leq c_1 r^2
$$
 and prove it by induction.

\n• **Base case:**
$$
T(0) = 0.
$$

\n• **Inductive step:**
$$
(n \geq 1)
$$

\n
$$
T(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}
$$

\n≤
$$
\max_{j \in [n]} \{c_1(j^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}
$$

\n=
$$
\max_{j \in [n]} \{c_1(n^2 + 1 - 2j(n + 1 - j)) + cn\}
$$

A more formal proof A more formal proof
• Suppose **pivot** is the *j*th smallest element.
• $T(n) = T(j-1) + T(n-j) + cn$

- -

• Goal:
$$
T(n)
$$

$$
\leq \max_{j\in[n]} \{T(j-1)+T(n-j)+cn\}
$$

$$
\left(T(n) \in \Theta(n^2) \right)
$$

- Guess $T(r) \leq c_1 r^2$ and prove it by induction.
Base case: $T(0) = 0$.
-

more formal proof

\nSuppose pivot is the *j*th smallest element.

\n•
$$
T(n) = T(j-1) + T(n-j) + cn
$$

\noal: $\boxed{T(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}}$ > $\boxed{T(n) \in \Theta(n^2)}$

\n• $\frac{G \text{uess } T(r) \leq c_1 r^2 \text{ and prove it by induction.}$

\n• **Base case:** $T(0) = 0$.

\n• Inductive step: $(n \geq 1)$

\n• $\max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$

\n≤ $\max_{j \in [n]} \{c_1(i^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}$

\n≤ $\max_{j \in [n]} \{c_1(n^2 + 1 - 2j(n + 1 - j)) + cn\}$

\n≤ $c_1(n^2 - 2n + 1) + cn = c_1n^2 + cn - c_1(2n - 1) \leq \cdots$

\n2j(n+1-j) is smallest when $j = 1$ or $j = n$.

A more formal proof A more formal proof
• Suppose **pivot** is the *j*th smallest element.
• $T(n) = T(j-1) + T(n-j) + cn$

- -

• **Goal:**
$$
T(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}
$$

$$
\boxed{T(n) \in \Theta(n^2)}
$$

NOTE	Formal proof
\n $r(n) = T(j-1) + T(n-j) + cn$ \n	
\n $r(n) = \max\{T(j-1) + T(n-j) + cn$ \n	
\n $r(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$ \n	
\n $r(n) \in \Theta(n^2)$ \n	
\n $r(n) \leq c_1 r^2$ and prove it by induction.\n	
\n $r(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$ \n	
\n $r(n) \leq \max_{j \in [n]} \{T(j-1) + T(n-j) + cn\}$ \n	
\n $r(n) \leq \max_{j \in [n]} \{r_1(j^2 - 2j + 1 + n^2 - 2nj + j^2) + cn\}$ \n	
\n $r(n) \leq \max_{j \in [n]} \{r_1(j^2 - 2j + 1 - 2j(n + 1 - j)) + cn\}$ \n	
\n $r(n) \leq r_1(n^2 + 1 - 2j(n + 1 - j)) + cn$ \n	
\n $r(n) \leq c_1(n^2 - 2n + 1) + cn = c_1n^2 + cn - c_1(2n - 1)$ \n	
\n $r(n) \leq c_1(n^2 - 2n + 1) + cn = c_1n^2 + cn - c_1(2n - 1)$ \n	

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.
- Assume all numbers are distinct.
- Let $a_1 < a_2 < \cdots < a_n$ be the input numbers in the sorted order.
- Fixing $(a_1, a_2, ..., a_n)$, the input array A can be described by a **permutation** π of $(a_1, a_2, ..., a_n)$.

- The worst-case bound $T(n) \in \Theta(n^2)$ does not capture the typical performance of quick sort.
- Next: average-case analysis.
- Assume all numbers are distinct.
- Let $a_1 < a_2 < \cdots < a_n$ be the input numbers in the sorted order.
- Fixing $(a_1, a_2, ..., a_n)$, the input array A can be described by a **permutation** π of $(a_1, a_2, ..., a_n)$. ie worst-case bound $T(n) ∈ Θ(n²)$ does not capture the typical performance of quick sort.
 ext: average-case analysis.

sume all numbers are distinct.

t $a_1 < a_2 < \cdots < a_n$ be the input numbers in the sorted order.

- The execution of the quick sort algorithm:
	- It depends only on π .

• The average-case running time $A(n)$ is the average running time over all inputs of size n.

Average-case running time *A*(*n*) is the average running time over all inputs of size *n*.
\nThere are *n*! permutations of
$$
(a_1, a_2, ..., a_n)
$$
.
\n
$$
A(n) = \sum_{n} \frac{1}{n!} \cdot (\text{running time of quick sort on } \pi)
$$
\nThe summation is over all permutations π of $(a_1, a_2, ..., a_n)$.
\nThe execution is over all permutations π of $(a_1, a_2, ..., a_n)$.

The execution of the quick sort algorithm:

- It depends only on π .
- It is independent of the actual values of $(a_1, a_2, ..., a_n)$.

Observation: $A(n)$ is also the expected running time when the permutation π is chosen uniformly at random.

• The average-case running time $A(n)$ is the average running time over all inputs of size n.

\n- The average-case running time
$$
A(n)
$$
 is the average running time over all inputs of size *n*.
\n- Each permutation is chosen with a probability of $\frac{1}{n!}$.
\n- $$
A(n) = \sum_{n} \frac{1}{n!} \cdot \text{(running time of quick sort on } \pi)
$$
\n- The summation is over all permutations π of (a_1, a_2, \ldots, a_n) .
\n- The execution of the quick sort algorithm:
\n

The execution of the quick sort algorithm:

- It depends only on π .
- It is independent of the actual values of $(a_1, a_2, ..., a_n)$.

Uniformity |:

If **pivot** $= a_j$, then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as foll

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, \ldots, a_{j-1}$
- $A_L: a_{j+1}, a_{j+2}, ..., a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random. Uniformity
 $\begin{array}{l}\n\text{If pivot} = a_j \text{, then the element} \\
\cdot \quad A_S: a_1, a_2, \dots, a_{j-1} \\
\cdot \quad A_L: a_{j+1}, a_{j+2}, \dots, a_n\n\end{array}$

Suppose the input permutation π of (a_1, a_2, \dots, a_n) is uniform
 Observation 1: The **pivot** is selected uniformly at ran

Observation 1: The pivot is selected uniformly at random.

 $\mathbf 1$ n and n a .

Uniformity |:

If **pivot** $= a_j$, then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as foll

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, ..., a_{j-1}$
- $A_L: a_{j+1}, a_{j+2}, ..., a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random. Uniformity
 $\begin{array}{c}\n\text{If pivot} = a_j \text{, then the element} \\
\cdot \quad A_S: a_1, a_2, \dots, a_{j-1} \\
\cdot \quad A_L: a_{j+1}, a_{j+2}, \dots, a_n\n\end{array}$

Suppose the input permutation π of (a_1, a_2, \dots, a_n) is uniform
 Observation 1: The **pivot** is selected uniformly at ran

Observation 1: The pivot is selected uniformly at random.

•
$$
\forall (j \in [n])
$$
, $\Pr[\text{pivot} = a_j] = \frac{1}{n}$.

Reason:

- The pivot is selected as the first element: pivot $\leftarrow A[1]$.
- If π is uniformly random, then each element has equal chance to be the first element.

If **pivot** $= a_j$, then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as foll

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, ..., a_{j-1}$
- $A_L: a_{i+1}, a_{i+2}, ..., a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random. Uniformity
 $\begin{array}{l} \text{If pivot} = a_j \text{, then the element} \\ \cdot & A_S: a_1, a_2, \dots, a_{j-1} \\ \cdot & A_L: a_{j+1}, a_{j+2}, \dots, a_n \end{array}$

Suppose the input permutation π of (a_1, a_2, \dots, a_n) is uniform
 Observation 1: The **pivot** is selected uniformly at random.

Observation 1: The pivot is selected uniformly at random.

 $\mathbf 1$ n and n a .

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_S : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability. **Uniformity**
 Comprise the input permutation π **of** $(a_1, a_2, ..., a_{n-1})$ **is uniformly random.**
 Conservation 1: The pivot is selected uniformly at random.

• $\forall (j \in [n])$, $\Pr[\text{pivot} = a_j] = \frac{1}{n}$.
 Observation 2: The perm
- : $\begin{cases} \cdot & A_L: a_{j+1}, a_{j+2}, ..., a_n \end{cases}$
ermutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.
 π is selected uniformly at random.
 $\pi = a_j$] = $\frac{1}{n}$.

permutations for both recursive calls are also uniformly random.
 $\$

If **pivot** $= a_j$, then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as foll

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, ..., a_{j-1}$
- $A_L: a_{i+1}, a_{i+2}, \ldots, a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random. Uniformity
 $\begin{array}{l} \text{If pivot} = a_j \text{, then the element} \\ \cdot & A_S: a_1, a_2, \dots, a_{j-1} \\ \cdot & A_L: a_{j+1}, a_{j+2}, \dots, a_n \end{array}$

Suppose the input permutation π of (a_1, a_2, \dots, a_n) is uniform
 Observation 1: The **pivot** is selected uniformly at random.

Observation 1: The **pivot** is selected uniformly at random.

 $\mathbf 1$ n and n a .

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_s : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability.
- **Uniformity**
 Comprise the input permutation π **of** $(a_1, a_2, ..., a_{n-1})$ **is uniformly random.**
 Conservation 1: The pivot is selected uniformly at random.

 $\forall (j \in [n])$, $\Pr[\text{pivot} = a_j] = \frac{1}{n}$.
 Observation 2: The perm

Reason:

: $\begin{cases}\n\cdot & A_L: a_{j+1}, a_{j+2}, ..., a_1 - 1 \\
\cdot & A_L: a_{j+1}, a_{j+2}, ..., a_n\n\end{cases}$

ermutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.
 $\text{pivot is selected uniformly at random.}$
 $\text{in } a_j$] = $\frac{1}{n}$.

permutations for both recursive calls are also uniformly rando • If pivot = a_j , then the partition algorithm never compares any two elements in $(a_1, a_2, ..., a_{j-1})$. utation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

t is selected uniformly at random.
 $\begin{aligned}\n\mathbf{r}_j &= \frac{1}{n}.\n\end{aligned}$

mutations for both recursive calls are also uniformly random.

h permutation of $(a_1, a_2, ..., a_{j-1})$ ap

If **pivot** $= a_j$, then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as foll

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, ..., a_{j-1}$
- $A_L: a_{i+1}, a_{i+2}, ..., a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random. Uniformity
 $\begin{array}{l} \text{If pivot} = a_j \text{, then the element} \\ \cdot & A_S: a_1, a_2, \dots, a_{j-1} \\ \cdot & A_L: a_{j+1}, a_{j+2}, \dots, a_n \end{array}$

Suppose the input permutation π of (a_1, a_2, \dots, a_n) is uniform
 Observation 1: The **pivot** is selected uniformly at random.

Observation 1: The pivot is selected uniformly at random.

 $\mathbf 1$ n and n a .

Observation 2: The permutations for both recursive calls are also uniformly random.

- Recursive call on A_s : Each permutation of $(a_1, a_2, ..., a_{j-1})$ appears with equal probability.
- **Uniformity**
 Comprise the input permutation π **of** $(a_1, a_2, ..., a_{n-1})$ **is uniformly random.**
 Conservation 1: The pivot is selected uniformly at random.

 $\forall (j \in [n])$, $\Pr[\text{pivot} = a_j] = \frac{1}{n}$.
 Observation 2: The perm : $\begin{cases}\n\cdot & A_L: a_{j+1}, a_{j+2}, ..., a_1 - 1 \\
\cdot & A_L: a_{j+1}, a_{j+2}, ..., a_n\n\end{cases}$

ermutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.
 $\text{pivot is selected uniformly at random.}$
 $\text{in } a_j$] = $\frac{1}{n}$.

permutations for both recursive calls are also uniformly rando Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.
 $\cdot \forall (j \in [n]), \Pr[\text{pivot} = a_j] = \frac{1}{n}$.
 Observation 2: The permutations for both recursive calls are also uniformly random.

• Recursive call on A_S • Recursive call on A_L : Each permutation of $(a_{j+1}, a_{j+2}, ..., a_n)$ appears with equal probability. \longleftarrow Similar

Reason:

• If pivot = a_j , then the partition algorithm never compares any two elements in $(a_1, a_2, ..., a_{j-1})$.

to $(a_1, a_2, ..., a_{i-1})$ is uniformly random.

realls are also uniformly random.
 (a_{j-1}) appears with equal probability.
 \dots, a_n appears with equal probability. \longleftarrow Similar

never compares any two elements in $(a_1, a_2, ..., a_{j-1})$.

At the end, the permutation of $(a$ is still uniformly random.

• Suppose $X = (x_1, x_2, x_3)$ is a uniformly random permutation of $(1, 2, 3)$. formly random permutation of (1, 2, 3).
 $X = (x_1, x_2, x_3)$

Swap x_2 and x_3 if $x_2 > x_3$.

Not uniformly random:

• (1, 2, 3) \rightarrow (1, 2, 3)

 $X = (x_1, x_2, x_3)$ Swap x_2 and x_3 .
Still uniformly random:

- $(1, 2, 3) \rightarrow (1, 3, 2)$
- $(1,3,2) \rightarrow (1,2,3)$
- $(2, 1, 3) \rightarrow (2, 3, 1)$
- $(2,3,1) \rightarrow (2,1,3)$
- $(3,1,2) \rightarrow (3,2,1)$
- $(3,2,1) \rightarrow (3,1,2)$

No comparison is made. A comparison is made.

$$
X = (x_1, x_2, x_3)
$$

-
- $(1,3,2) \rightarrow (1,2,3)$
- $(2, 1, 3) \rightarrow (2, 1, 3)$
- $(2,3,1) \rightarrow (2,1,3)$
- $(3,1,2) \rightarrow (3,1,2)$
- $(3,2,1) \rightarrow (3,1,2)$

Recurrence

If **pivot** = a_j , then the elements in the two recursive calls are
 a_S: a_1 , a_2 , ..., a_{j-1}
 a A_L : a_{j+1} , a_{j+2} , ..., a_n If **pivot** = a_j , then the elements in the two recursive calls are as follows: **t** = a_j , then the elements in the two recursive calls are as follo

: $a_1, a_2, ..., a_{j-1}$

: $a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random. **t** = a_j , then the elements in the two recursive calls are as follows:
 $:a_1, a_2, ..., a_{j-1}$
 $:a_{j+1}, a_{j+2}, ..., a_n$

, $a_2, ..., a_n$) is uniformly random.

- $A_S: a_1, a_2, ..., a_{j-1}$
- $A_L: a_{j+1}, a_{j+2}, ..., a_n$

Suppose the input permutation π of $(a_1, a_2, ..., a_n)$ is uniformly random.

Observation 1: The **pivot** is selected uniformly at random.

Observation 2: The permutations for both recursive calls are also uniformly random.

Conditioning on **pivot** = a_j , the expected running time of the two recursive calls.

$$
A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} \left[A(j-1) + A(n-j) + cn \right] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)
$$

Solving the recurrence
\n
$$
A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)
$$
\n
$$
\frac{n \cdot A(n) = cn^{2} + 2 \cdot \sum_{j=0}^{n-1} A(j)}{(n-1) \cdot A(n-1) = c(n-1)^{2} + 2 \cdot \sum_{j=0}^{n-2} A(j)}
$$

Solving the recurrence
\n
$$
A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)
$$
\n
$$
\cdot \frac{n \cdot A(n) = cn^{2} + 2 \cdot \sum_{j=0}^{n-1} A(j)}{(n-1) \cdot A(n-1) = c(n-1)^{2} + 2 \cdot \sum_{j=0}^{n-2} A(j)}
$$
\n
$$
\downarrow
$$
\n
$$
\cdot \frac{n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)}
$$

Solving the recurrence
\n
$$
A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)
$$
\n
$$
\cdot \frac{n \cdot A(n) = cn^{2} + 2 \cdot \sum_{j=0}^{n-1} A(j)}{(n-1) \cdot A(n-1) = c(n-1)^{2} + 2 \cdot \sum_{j=0}^{n-2} A(j)}
$$
\n
$$
\cdot \frac{n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)}{n \cdot A(n) - (n+1) \cdot A(n-1) = (n \cdot A(n) - (n-1) \cdot A(n-1)) - 2A(n-1) = c(2n-1)}
$$

Solving the recurrence
\n
$$
A(n) = \frac{1}{n} \cdot \sum_{j=1}^{n} [A(j-1) + A(n-j) + cn] = cn + \frac{2}{n} \cdot \sum_{j=0}^{n-1} A(j)
$$
\n
$$
\frac{n \cdot A(n) = cn^2 + 2 \cdot \sum_{j=0}^{n-1} A(j)}{(n-1) \cdot A(n-1) = c(n-1)^2 + 2 \cdot \sum_{j=0}^{n-2} A(j)}
$$
\n
$$
\frac{n \cdot A(n) - (n-1) \cdot A(n-1) = c(2n-1) + 2A(n-1)}{n \cdot A(n) - (n+1) \cdot A(n-1) = (n \cdot A(n) - (n-1) \cdot A(n-1)) - 2A(n-1) = c(2n-1)}
$$
\n
$$
\frac{\text{Dividing by } n(n+1)}{n+1} = \frac{c(2n-1)}{n(n+1)} < \frac{c(2n+2)}{n(n+1)} = \frac{2c}{n}
$$

$$
O(\log n) \qquad O(1)
$$

$$
\frac{A(n)}{n+1} < 2c \cdot \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \dots + \frac{1}{2}\right) + \frac{A(1)}{2}
$$

 $A(n) \in O(n \log n)$

\n $0(\log n)$ \n	\n $\frac{A(n)}{n+1} - \frac{A(n-1)}{n} < \frac{2c}{n}$ \n	
\n $0(\log n)$ \n	\n $0(1)$ \n	\n $\frac{A(n-1)}{n} - \frac{A(n-2)}{n-1} < \frac{2c}{n-1}$ \n
\n $+\frac{1}{n-2} + \cdots + \frac{1}{2}$ \n	\n $\frac{A(1)}{2}$ \n	\n $\frac{A(n-2)}{n-1} - \frac{A(n-3)}{n-2} < \frac{2c}{n-2}$ \n
\n $\frac{A(2)}{3} - \frac{A(1)}{2} < \frac{2c}{2}$ \n		

Question 3 @ VisuAlgo online quiz
Who is the **Master of Algorithms** pictured below?

Who is the **Master of Algorithms** pictured below?

- Tony Hoare
- John Hopcroft
- Ronald Rivest
- Andrew Yao

Desirable properties of sorting algorithms

- Small running time:
	- Worst case.
	- Average case.
- Comparison-based algorithms.
- What else?

Stable sorting

- Stable sorting algorithm:
	- For elements of equal values, the original ordering is preserved.
	- If $A[i] = A[j]$ and $i < j$, then $A[i]$ must be before $A[j]$ in the output.

Stable sorting

- Stable sorting algorithm:
	- For elements of equal values, the original ordering is preserved.
	- If $A[i] = A[i]$ and $i < j$, then $A[i]$ must be before $A[i]$ in the output.
		- Insertion sort is stable.
		- Merge sort is stable if implemented properly.
		- Most of the implementations of quick sort are not stable.

In-place sorting

• A sorting algorithm is in-place if it uses very little extra memory besides the input array.

In-place sorting

- A sorting algorithm is **in-place** if it uses very little extra memory besides the input array. Figure 11 The extrament or properly and the mory of the morplemented properly sorted first.
After partitioning, the sub-array with the fewer elements is recursively sorted first.
	- Insertion sort uses only $O(1)$ extra memory.
	- Merge sort uses $O(n)$ extra memory.
	- Quicksort uses $O(\log n)$ extra memory if implemented properly.

After partitioning, the sub-array with the

Desirable properties of sorting algorithms **Desirable properties of sortin**

• Small running time:

• Worst case.

• Additional desirable properties:

• Comparison-based.

• Stable.

- Small running time:
	- Worst case.
	- Average case.
- - Comparison-based.
	- Stable.
	-

• Stable. $\begin{bmatrix} \Box & \Box & \Box \end{bmatrix}$ They are highly dependent on the specific way the algorithm is implemented.

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms

Acknowledgement

• The slides are modified from previous editions of this course and similar course elsewhere. **Example Change School**
 Example 2014
 **Example School Schools Change Schools Schools Schools Schools Schools

Example Schools Change - Arnab Bhattacharya**

• Arnab Bhattacharya

• Diptarka Chakraborty

• Yi-Jun Chang

• List of credits:

- Surender Baswana
- Arnab Bhattacharya
-
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Wing-Kin Sung