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Lecture 4b: Average-Case Analysis of Quick Sort



Quick sort

• Input: an array of elements.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and ௅.

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

௅ௌ

∀𝑥 ∈ 𝐴௅, 𝑥 ≥ pivot

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick
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There are various ways to implement this part.



Quick sort

• Input: an array of elements.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and ௅.
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VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

It is common to choose the first element as the pivot: pivot ← 𝐴 1 .
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Θ 𝑛 time

This step requires comparing pivot and all other elements.

An example.
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• Recursively sort ௌ and ௅.

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot
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∀𝑥 ∈ 𝐴௅, 𝑥 ≥ pivot

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Θ 𝑛 time

𝑇 𝑛 time

𝑇 𝑗 − 1 + 𝑇 𝑛 − 𝑗 time, if pivot is the 𝑗th smallest element.

Assume that all elements are distinct.



Recurrence

• Suppose pivot is the th smallest element.
•



Worst-case running time

• Suppose pivot is the th smallest element.
•

• Intuition: Worst case seems to be  or .
• ଶ

• ଶ

VisuAlgo (Worst-case analysis of quick sort): https://visualgo.net/en/recursion?example=QuickSort



A more formal proof

• Suppose pivot is the th smallest element.
•

• Goal:
௝∈ ௡

ଶ

• Guess 𝑇 𝑟 ≤  𝑐ଵ𝑟ଶ and prove it by induction.
• Base case: 𝑇 0 = 0. Just simply not invoke any recursive call with 𝑛 = 0. 
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Select 𝑐ଵ so that ∀ 𝑛 ≥ 1 , 𝑐𝑛 ≤ 𝑐ଵ 2𝑛 − 1 .



Average-case analysis

• The worst-case bound ଶ does not capture the typical performance of quick sort.

• Next: average-case analysis.
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• Assume all numbers are distinct.

• Let ଵ ଶ ௡ be the input numbers in the sorted order.

• Fixing ଵ ଶ ௡ , the input array can be described by a permutation of ଵ ଶ ௡ .



Average-case analysis

• The worst-case bound ଶ does not capture the typical performance of quick sort.

• Next: average-case analysis.

• Assume all numbers are distinct.

• Let ଵ ଶ ௡ be the input numbers in the sorted order.

• Fixing ଵ ଶ ௡ , the input array can be described by a permutation of ଵ ଶ ௡ .

• The execution of the quick sort algorithm:
• It depends only on 𝜋.
• It is independent of the actual values of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .

Quick sort is comparison-based.



ଵ

௡!
running time of quick sort onగ

Average-case analysis

• The average-case running time is the average running time over all inputs of size .

The summation is over all permutations 𝜋 of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .  

There are 𝑛! permutations of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .  

The execution of the quick sort algorithm:
• It depends only on 𝜋.
• It is independent of the actual values of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .



ଵ

௡!
running time of quick sort onగ

Average-case analysis

• The average-case running time is the average running time over all inputs of size .

The summation is over all permutations 𝜋 of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .  

Each permutation is chosen with a probability of ଵ

௡!
.

The execution of the quick sort algorithm: 
• It depends only on 𝜋.
• It is independent of the actual values of 𝑎ଵ, 𝑎ଶ, … , 𝑎௡ .

Observation: 𝐴 𝑛 is also the expected running time
when the permutation 𝜋 is chosen uniformly at random.  



Uniformity

Suppose the input permutation of ଵ ଶ ௡ is uniformly random.

Observation 1: The pivot is selected uniformly at random.

• ∀ 𝑗 ∈ 𝑛 , Pr pivot = 𝑎௝ =
ଵ

௡
.

If pivot = 𝑎௝, then the elements in the two recursive calls are as follows:
• 𝐴ௌ: 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ

• 𝐴௅: 𝑎௝ାଵ, 𝑎௝ାଶ, … , 𝑎௡



Uniformity

Suppose the input permutation of ଵ ଶ ௡ is uniformly random.

Observation 1: The pivot is selected uniformly at random.

• ∀ 𝑗 ∈ 𝑛 , Pr pivot = 𝑎௝ =
ଵ

௡
.

If pivot = 𝑎௝, then the elements in the two recursive calls are as follows:
• 𝐴ௌ: 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ

• 𝐴௅: 𝑎௝ାଵ, 𝑎௝ାଶ, … , 𝑎௡

Reason:
• The pivot is selected as the first element: pivot ← 𝐴 1 .
• If 𝜋 is uniformly random, then each element has equal chance to be the first element.
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Uniformity

Suppose the input permutation of ଵ ଶ ௡ is uniformly random.

Observation 1: The pivot is selected uniformly at random.

• ∀ 𝑗 ∈ 𝑛 , Pr pivot = 𝑎௝ =
ଵ

௡
.

Observation 2: The permutations for both recursive calls are also uniformly random.

• Recursive call on 𝐴ௌ: Each permutation of 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ appears with equal probability.

• Recursive call on 𝐴௅: Each permutation of 𝑎௝ାଵ, 𝑎௝ାଶ, … , 𝑎௡ appears with equal probability.

If pivot = 𝑎௝, then the elements in the two recursive calls are as follows:
• 𝐴ௌ: 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ

• 𝐴௅: 𝑎௝ାଵ, 𝑎௝ାଶ, … , 𝑎௡

Reason:
• If pivot = 𝑎௝, then the partition algorithm never compares any two elements in 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ .

At the start, the input permutation 𝜋 restricted 
to 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ is uniformly random.

At the end, the permutation of 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ

is still uniformly random.  

Similar



Uniformity

• Suppose ଵ ଶ ଷ is a uniformly random permutation of .

ଵ ଶ ଷ

Swap 𝑥ଶ and 𝑥ଷ. 

Still uniformly random:
•
•
•
•
•
•

ଵ ଶ ଷ

Swap 𝑥ଶ and 𝑥ଷ if 𝑥ଶ > 𝑥ଷ. 

Not uniformly random:
•
•
•
•
•
•

No comparison is made. A comparison is made.



Recurrence

Suppose the input permutation of ଵ ଶ ௡ is uniformly random.

Observation 1: The pivot is selected uniformly at random.

Observation 2: The permutations for both recursive calls are also uniformly random.

If pivot = 𝑎௝, then the elements in the two recursive calls are as follows:
• 𝐴ௌ: 𝑎ଵ, 𝑎ଶ, … , 𝑎௝ିଵ

• 𝐴௅: 𝑎௝ାଵ, 𝑎௝ାଶ, … , 𝑎௡

Recall: 𝐴 𝑛 is the expected running time when the permutation 𝜋 is chosen uniformly at random.

𝐴 𝑛 =
1

𝑛
⋅ ෍ 𝐴 𝑗 − 1 + 𝐴 𝑛 − 𝑗 + 𝑐𝑛

௡

௝ୀଵ 

∀ 𝑗 ∈ 𝑛 , Pr pivot = 𝑎௝ =
1

𝑛

Conditioning on pivot = 𝑎௝, the expected running time of the two recursive calls.

The cost to perform the partition.
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• 𝑛 − 1 ⋅ 𝐴 𝑛 − 1 = 𝑐 𝑛 − 1 ଶ + 2 ⋅ ∑ 𝐴 𝑗௡ିଶ
௝ୀ଴ 

• 𝑛 ⋅ 𝐴 𝑛 − 𝑛 − 1 ⋅ 𝐴 𝑛 − 1 = 𝑐 2𝑛 − 1 + 2𝐴 𝑛 − 1

• 𝑛 ⋅ 𝐴 𝑛 − 𝑛 + 1 ⋅ 𝐴 𝑛 − 1 = 𝑛 ⋅ 𝐴 𝑛 − 𝑛 − 1 ⋅ 𝐴 𝑛 − 1 − 2𝐴 𝑛 − 1 = 𝑐 2𝑛 − 1
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• 𝑛 ⋅ 𝐴 𝑛 = 𝑐𝑛ଶ + 2 ⋅ ∑ 𝐴 𝑗௡ିଵ
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Dividing by 𝑛(𝑛 + 1)



Solving the recurrence 𝐴 𝑛

𝑛 + 1
−

𝐴 𝑛 − 1

𝑛
<

2𝑐

𝑛

𝐴 𝑛 − 1

𝑛
−

𝐴 𝑛 − 2

𝑛 − 1
<

2𝑐

𝑛 − 1

𝐴 𝑛 − 2

𝑛 − 1
−

𝐴 𝑛 − 3

𝑛 − 2
<

2𝑐

𝑛 − 2

𝐴 2

3
−

𝐴 1

2
<

2𝑐

2

⋮

𝑂 log 𝑛 𝑂 1



Who is the Master of Algorithms pictured below?

• Tony Hoare

• John Hopcroft

• Ronald Rivest

• Andrew Yao

Question 3 @ VisuAlgo online quiz



Desirable properties of sorting algorithms

• Small running time:
• Worst case.
• Average case.

• Comparison-based algorithms.

• What else?



Stable sorting

• Stable sorting algorithm:
• For elements of equal values, the original ordering is preserved.
• If and , then must be before in the output.



Stable sorting

• Stable sorting algorithm:
• For elements of equal values, the original ordering is preserved.
• If and , then must be before in the output.

• Insertion sort is stable.
• Merge sort is stable if implemented properly.
• Most of the implementations of quick sort are not stable.



In-place sorting

• A sorting algorithm is in-place if it uses very little extra memory 
besides the input array.



In-place sorting

• A sorting algorithm is in-place if it uses very little extra memory 
besides the input array.

• Insertion sort uses only extra memory.
• Merge sort uses extra memory. 
• Quicksort uses extra memory if implemented properly.

After partitioning, the sub-array with the 
fewer elements is recursively sorted first.



Desirable properties of sorting algorithms

• Small running time:
• Worst case.
• Average case.

• Additional desirable properties:
• Comparison-based.
• Stable.
• In-place.

They are highly dependent on the specific way the algorithm is implemented.

https://en.wikipedia.org/wiki/Sorting_algorithm#Comparison_of_algorithms
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