CS3230 — Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 4b: Average-Case Analysis of Quick Sort

Quick sort

* Input: an array A[1..n] of n elements.

* Partition: A A
. . S L
» Select a numberin A[1..n] as the pivot.
* Rearrange the array to satisfy the condition: A = [......... piVOt .. et esvee e ot |
Vx € Ag, x < pivot Vx € A, x = pivot

* Recursion:
* Recursively sort Ag and 4; .

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Quick sort

* Input: an array A[1..n] of n elements.

There are various ways to implement this part.

* Partition: A A
. . S L
» Select a numberin A[1..n] as the pivot.
* Rearrange the array to satisfy the condition: A = [.................pivot e veeoev ot |
Vx € Ag, x < pivot Vx € A;,x = pivot

* Recursion:
* Recursively sort Ag and A4;.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Qu | C k SO rt [It is common to choose the first element as the pivot: pivot < A[1].]

* Input: an array A[1..n] of n elements.

* Partition: A A
e . S L
» Select a number in A[1..n] as the pivot. { \ | { I\ |
* Rearrange the array to satisfy the condition: A = [............pivOt ... e ces vee oot |
Vx € Ag, x < pivot Vx € A;,x = pivot

* Recursion:
* Recursively sort Ag and A4;.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Quick sort

* Input: an array A[1..n] of n elements.

* Partition: 4 y
. . S L
» Select a numberin A[1..n] as the pivot.
* Rearrange the array to satisfy the condition: A = [..................pivOt ... ceo ot e e ol |
O(n) time Vx € Ag, x < pivot Vx € A;,x = pivot

 Recursion:

« Recursively sort As and 4, . This step requires comparing pivot and all other elements.

An example.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Quick sort rmtime

* Input: an array A[1..n] of n elements.

* Partition: 4 y
. . S L
» Select a numberin A[1..n] as the pivot. { | | { \ |
* Rearrange the array to satisfy the condition: A = [... PIVOL et v e e et]
O(n) time Vx € Ag, x < pivot Vx € A;,x = pivot

* Recursion:
* Recursively sort Ag and A4;.

T(j—1)+ T(n—j) time, if pivot is\thejth smallest element.}
Y
Assume that all elements are distinct.

VisuAlgo (Quick sort): https://visualgo.net/en/sorting?mode=Quick

Recurrence

* Suppose pivot is the jth smallest element.
e TM)=TG—-1)+Tn—j)+cn

Worst-case running time e

* Suppose pivot is the jth smallest element. /\

ce T(M)=TG—-1)+Tn—j)+cn c(n—2) T(0)
* Intuition: Worst case seemstobe j =1 orj = n. c(n _{)\T(O)
e T(M)=TO)+Tn—-1)+cn € O(n?) T
Vi T(0)
« T(n) € ©(n?) cl i
T(0) T(0)

VisuAlgo (Worst-case analysis of quick sort): https://visualgo.net/en/recursion?example=QuickSort

A more formal proof

* Suppose pivot is the jth smallest element.
e TM)=TG—-1)+Tn—j)+cn

e Goal: T < ?el?n)f{T(j — 1)+ T(n—j)+cn} T(n) € O(n?)

e Guess T(r) < c;72 and prove it by induction.
Base case: T(0) = 0. Just simply not invoke any recursive call withn = 0.

A more formal proof

* Suppose pivot is the jth smallest element.
e TM)=TG—-1)+Tn—j)+cn

* Goal: [T(n) < max(T(j = 1)+ T(n -) + cn} } > [T(n) € 0(n?) }

K Guess T(r) < c¢,r? and prove it by induction.
Base case: T(0) = 0.
Inductive step: (n = 1)
T(n) < max{T(]' —1)+Tn—j)+cn}
< rrelax{cl(]2 —2j+1+4+n?—-2nj+j2) +cn}
J

—max{cl(n +1 -2j(n+1—)))+cn}

JjE[n]

.

A more formal proof

* Suppose pivot is the jth smallest element.
e TM)=TG—-1)+Tn—j)+cn

e Goal: T < ?elfln)f{T(j — 1)+ T(n—j)+cn} T(n) € O(n?)

e Guess T(r) < c;72 and prove it by induction.
 Basecase:T(0) = 0.
* Inductive step: (n = 1)
T(n) < r,relfui{T(j —1)+T(n—j)+cn}
JjE[n
< r_relfui{cl(jz —2j+1+n?—=2nj+ /%) +cn}
JjE[n
— r-re’f”i{cl(nz +1 —-2j(n+1—)))+cn}
JjE[n
<cn?-2n+1D)+cn=cn’*+cn—c;2n-1) < -

2j(n+1—j)issmallestwhenj = 1orj =n.

A more formal proof

* Suppose pivot is the jth smallest element.
e TM)=TG—-1)+Tn—j)+cn

e Goal: T < ?elfln)f{T(j — 1)+ T(n—j)+cn} T(n) € O(n?)

e Guess T(r) < c;72 and prove it by induction.
 Basecase:T(0) = 0.
* Inductive step: (n = 1)
T(n) < r,relfui{T(j —1)+T(n—j)+cn}
JjE[n
< r_relfui{cl(jz —2j+1+n%—2nj+j%) +cn}
JEINn
= max{cl (nz +1 -2j(n+1 _J)) + Cn} Select ¢; sothat V(n > 1),cn < ¢;(2n — 1).

jE[n]
<cn?-2n+1)+cn=cn?*+cen—-c;2n—-1) < c¢;n?

Average-case analysis

 The worst-case bound T(n) € ©®(n?) does not capture the typical performance of quick sort.

* Next: average-case analysis.

Average-case analysis

The worst-case bound T(n) € ®(n?) does not capture the typical performance of quick sort.

Next: average-case analysis.

Assume all numbers are distinct.

Let a; < a, < -+ < a, be the input numbers in the sorted order.

Fixing (a4, a,, ..., a,), the input array A can be described by a permutation i of (ay, a,, ..., a,).

Average-case analysis

The worst-case bound T(n) € ®(n?) does not capture the typical performance of quick sort.

Next: average-case analysis.

Assume all numbers are distinct.

Let a; < a, < -+ < a, be the input numbers in the sorted order.

Fixing (a4, a,, ..., a,), the input array A can be described by a permutation i of (ay, a,, ..., a,).

The execution of the quick sort algorithm:
* |t depends only on m.

. Quick sort is comparison-based.
* Itis independent of the actual values of (a4, a,, ..., a,,). P

Average-case analysis

* The average-case running time A(n) is the average running time over all inputs of size n.

There are n! permutations of (a4, a,, ..., a,).

A(n) = Zn% - (running time of quick sort on)

The summation is over all permutations 7 of (a4, a,, ..., a,).

The execution of the quick sort algorithm:
* Iltdepends only on .
 Itisindependent of the actual values of (a4, a,, ..., a,).

Ave 'a ge—ca Seé ana |yS I S Observation: A(n) is also the expected running time

when the permutation m is chosen uniformly at random.

* The average-case running time A(n) is the average running time over all inputs of size n.

Each permutation is chosen with a probability of %

A(n) = Zn% - (running time of quick sort on 1)

The summation is over all permutations 7 of (a4, a,, ..., a,).

The execution of the quick sort algorithm:
* Iltdepends only on .
 Itisindependent of the actual values of (a4, a,, ..., a,).

If pivot = a;, then the elements in the two recursive calls are as follows:

Uniformity L et

® AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.
1
~.

* V(j € [n]), Pl‘[pivot = aj] =

If pivot = a;, then the elements in the two recursive calls are as follows:

Uniformity L et

® AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.
; vot = a.] =21
v(j € [n]), Pr[plvot = a]] ==
Reason:
* The pivot is selected as the first element: pivot « A[1].
* If mis uniformly random, then each element has equal chance to be the first element.

If pivot = a;, then the elements in the two recursive calls are as follows:

Uniformity L et

® AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.
1
~.

* V(j € [n]), Pl‘[pivot = aj] =

Observation 2: The permutations for both recursive calls are also uniformly random.
* Recursive call on Ag: Each permutation of (al, as, ..., aj_l) appears with equal probability.

* Recursive call on A;: Each permutation of (aj+1, Ajy2) e an) appears with equal probability.

If pivot = a;, then the elements in the two recursive calls are as follows:

Uniformity L et

® AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.
1
~.

* V(j € [n]), Pl‘[pivot = aj] =

Observation 2: The permutations for both recursive calls are also uniformly random.
* Recursive call on Ag: Each permutation of (al, as, ..., aj_l) appears with equal probability.

* Recursive call on A;: Each permutation of (aj+1, Ajy2) e an) appears with equal probability.

Reason:
* If pivot = a;, then the partition algorithm never compares any two elements in (al, as, ..., aj_l).

If pivot = a;, then the elements in the two recursive calls are as follows:

Uniformity L et

® AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.
1
~.

* V(j € [n]), Pl‘[pivot = aj] =

Observation 2: The permutations for both recursive calls are also uniformly random.
* Recursive call on Ag: Each permutation of (al, as, ..., aj_l) appears with equal probability.

* Recursive call on A;: Each permutation of (aj+1, Ajy2) e an) appears with equal probability.

Reason:
* If pivot = a;, then the partition algorithm never compares any two elements in (al, as, ..., aj_l).

At the start, the input permutation m restricted At the end, the permutation of (al, Ay, ey aj_l)
to (al, Ay, .., aj_l) is uniformly random. is still uniformly random.

Uniformity

* Suppose X = (x4, X5, x3) is a uniformly random permutation of (1, 2, 3).

X = (xq,x3,x3)

Swap x, and x3.

Still uniformly random:
e (1,2,3) - (1,3,2)
(1,3,2) » (1,2,3)
2,1,3) » (2,3,1)
2,3,1) - (2,1,3)
(3,1,2) » (3,2,1)
(3,2,1) > (3,1,2)

No comparison is made.

X = (x1,x3,x3)

Swap x, and x3 if x, > x3.

Not uniformly random:
e (1,2,3) > (1,2,3)
« (1,3,2) > (1,2,3)
e (2,1,3) - (2,1,3)
e (2,3,1) - (2,1,3)
« (3,1,2) > (3,1,2)
« (3,2,1) - (3,1,2)

A comparison is made.

If pivot = a;, then the elements in the two recursive calls are as follows:
Recurrence L A58y 0y

* AL:aj+1, aj+2,...,an
Suppose the input permutation of (a4, a,, ..., a,) is uniformly random.

Observation 1: The pivot is selected uniformly at random.

Observation 2: The permutations for both recursive calls are also uniformly random.

Recall: A(n) is the expected running time when the permutation 7 is chosen uniformly at random.
n

1
A@) =~ > [AG = D) + 4@ —) + cnl
j=1
v(j € [n]), Pr[pivot = aj] = l The cost to perform the partition.
n

Conditioning on pivot = a;, the expected running time of the two recursive calls.

Solving the recurrence

An) =

S|¥

n n—1
2

: A —1)+An—j)+cn] =cn+—- A(j)

> 2)

j=0

Solving the recurrence

n n—1
1 2
A(n) = Z[A(j—1)+A(n—j)+cn] =cn+£- zA(j)

* n-Am) =cn*+2-Y125 AG)
+ -1 -Am-1D=c(n—-1)*+2-3]ZAQ)

Solving the recurrence

n n-—1
1 2
A(n) ZE'Z[A(I'—D‘FA("—]')‘FC"] =cn+E-ZA(i)
| j=1 j=0
[- n-A(n)=cn2+2-Z?=_(}A(j) }

s -1 - An-D=cln—-1)2+2-372FAQ)

J

[- nAm) — (=1) At —1) = c(2n—1) + 24(n — 1)

Solving the recurrence

n n—

1
A(n)=%-Z[A(i—1)+/l(n—j)+cn]=cn+%- A(j)

j=1 j=0

* n-A(n) =cn®+2-X750 A()
+ (-1 -An-D=cln—1*+2-3725 AQ)

e n-An)—(n—1)-An—-1)=c(2n—-1)+24(n—-1)
s n-Am) -+ 1) -An-1D=mn-An) - (-1 -An-1))-24n—-1) =cn-1)

Solving the recurrence

n n-—

1
A(n)=%-Z[A(j—1)+/l(n—j)+cn]=cn+%- A(j)

J=1 j=0

* n-Am) =cn*+2-Y125 AG)
+ -1 -Am-1D=c(n—-1)*+2-3]ZAQ)

e n-An)—(n—1)-An—-1)=c@2n—-1)+24(n—-1)
c n-Am)—(n+ 1) -An-D=mn-An)-(n-1) -An—-1))-24(n—-1) =c(n-1)

Dividing by n(n + 1)

An) An—-1) c(@n-1) c(@n+2) 2
n+1 n _n(n+1)<n(n+1)_n

Solving the recurrence A A=) 2

n+1 n n

A(n—l)_A(n—2)< 2c

O(l 0o(1
(ogn) (1) n n—1 n—1

A) (11 1 1) AQ)
nt+1 o\ T o1 T2 2 2 AT AR %
n—1 n—2 n—2

A(n) € O(nlogn)
A(Z)__A(l) 2C

3 2 <2

Question 3 @ VisuAlgo online quiz

Who is the Master of Algorithms pictured below?
* Tony Hoare
 John Hopcroft
* Ronald Rivest

e Andrew Yao

Desirable properties of sorting algorithms

* Small running time:
* Worst case.
* Average case.

 Comparison-based algorithms.

e What else?

Stable sorting

* Stable sorting algorithm:

* For elements of equal values, the original ordering is preserved.
« If A[i] = A[j]and i < j, then A[i] must be before A[j] in the output.

Stable sorting

* Stable sorting algorithm:

* For elements of equal values, the original ordering is preserved.
« If A[i] = A[j]and i < j, then A[i] must be before A[j] in the output.

* |Insertion sort is stable.
* Merge sort is stable if implemented properly.
* Most of the implementations of quick sort are not stable.

In-place sorting

* A sorting algorithm is in-place if it uses very little extra memory
besides the input array.

In-place sorting

* A sorting algorithm is in-place if it uses very little extra memory
besides the input array.

* Insertion sort uses only O(1) extra memory.
* Merge sort uses O(n) extra memory.
* Quicksort uses O(logn) extra memory if implemented properly.

After partitioning, the sub-array with the
fewer elements is recursively sorted first.

Desirable properties of sorting algorithms

* Small running time:
* Worst case.
* Average case.

* Additional desirable properties:
* Comparison-based.
* Stable.

| | They are highly dependent on the specific way the algorithm is implemented.
* In-place.

https://en.wikipedia.org/wiki/Sorting algorithm#Comparison of algorithms

Acknowledgement

* The slides are modified from previous editions of this course and similar
course elsewhere.

e List of credits:

* Surender Baswana
Arnab Bhattacharya
Diptarka Chakraborty
Yi-Jun Chang
Erik Demaine
Steven Halim
Sanjay Jain
Wee Sun Lee
Charles Leiserson
Hon Wai Leong
Wing-Kin Sung

