CS3230 – Design and Analysis of Algorithms

(S1 AY2024/25)

Letwe 5: Perdemised Algorithms (S1 AY2024/25)

Lecture 5: Randomized Algorithms

Randomized algorithms

Randomized algorithms

than their deterministic counterparts, at the cost of allowing a small error probability.

Randomized algorithms

-
-

Here algorithm can perform badly for some inputs.

Verification of matrix multiplication

• Given three $n \times n$ matrices A, B, and C, check if $AB = C$.

• A naïve algorithm:

• Calculate AB using a matrix multiplication algorithm.

Verification of matrix multiplication

• Given three $n \times n$ matrices A, B, and C, check if $AB = C$.

• A naïve algorithm:

- Calculate AB using a matrix multiplication algorithm.
- The time complexity of matrix multiplication:
	- Basic algorithm: $O(n^3)$. .
	- Strassen's algorithm: $O(n^{2.807...})$.

Question: Can we do better?

Freivalds' algorithm

For each $i \in [n]$ independently: For each $i \in [n]$ independently:

• $v_i = 0$ with probability $\frac{1}{2}$.

• $v_i = 1$ with probability $\frac{1}{2}$. 2^{10} . For each $i \in [n]$ independently:
• $v_i = 0$ with probability $\frac{1}{2}$.
• $v_i = 1$ with probability $\frac{1}{2}$. 2^{10} • $v_i = 1$ with probability $\frac{1}{2}$.

Freivalds' algorithm

For each $i \in [n]$ independently:
• $v_i = 0$ with probability $\frac{1}{2}$.
• $v_i = 1$ with probability $\frac{1}{2}$.
This can be done in $O(n^2)$ time via 2^{10} . For each $i \in [n]$ independently:

• $v_i = 0$ with probability $\frac{1}{2}$.

• $v_i = 1$ with probability $\frac{1}{2}$.

This can be done in $O(n^2)$ time via

three matrix-vector multiplication. 2^{10} .

This can be done in $O(n^2)$ time via three matrix-vector multiplication.

Freivalds' algorithm

Freivalds (A, B, C) $\left| \begin{array}{c} \hline \end{array} \right|$ $2 \mid$ to be a uniformly • Choose $v = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ to be a uniformly $\begin{array}{|c|c|c|}\n\hline\n\end{array}$. $n/$ \vert

• Check if $ABv = Cv.$

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$.

 v_n $\left\{\nu_n\right\}$ $\cdot v_i = 1$ with probability $\frac{1}{2}$. . | <u>J</u> For each $i \in [n]$ independently:
• $v_i = 0$ with probability $\frac{1}{2}$.
• $v_i = 1$ with probability $\frac{1}{2}$.
This can be done in $O(n^2)$ time via 2^{10} . For each $i \in [n]$ independently:

• $v_i = 0$ with probability $\frac{1}{2}$.

• $v_i = 1$ with probability $\frac{1}{2}$.

This can be done in $O(n^2)$ time via

three matrix-vector multiplication. 2^{10} .

This can be done in $O(n^2)$ time via three matrix-vector multiplication.

Analysis of Freivalds' algorithm

Freivalds (A, B, C) $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid$ to be a uniformly • Choose $v = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ to be a uniformly $n/$ \vert \vert

random column vector from $\{0,1\}^n$. .

- Check if $ABv = Cv$.
- If $ABv = Cv$, then output $AB = C$.
- If $ABv \neq Cv$, then output $AB \neq C$.
- If $AB = C$, then $ABv = Cv$, so the algorithm always decides $AB = C$ correctly.
- From now on, we focus on the case where $AB \neq C$.

Analysis of Freivalds' algorithm

Freivalds (A, B, C) $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid$ to be a uniformly • Choose $v = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ to be a uniformly $n/$

random column vector from $\{0,1\}^n$.

• Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$. $\qquad \bullet u =$

y
\n•
$$
C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C
$$

$$
\bullet \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v
$$

Analysis of Freivalds' algorithm

Freivalds (A, B, C) $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid$ to be a uniformly • Choose $v = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ to be a uniformly $n/$

random column vector from $\{0,1\}^n$.

• Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$. $\qquad \bullet u =$

y
\n•
$$
C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C
$$

$$
\bullet \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v
$$

The algorithm outputs an incorrect answer if and only if ⁼ if and only if = 0 for all [∈]

Freivalds' algorithm is successful] = $Pr[u_k \neq 0$ for some $k \in [n]$]
Of Freivalds' algorithm Analysis of Freivalds' algorithm

Freivalds (A, B, C) $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid t \cap b \cap \mathcal{L}$ iniformly • Choose $v = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ to be a uniformly $\left| \frac{1}{2} \right|$

random column vector from $\{0,1\}^n$.

Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$. $\qquad \bullet u =$

y
\n•
$$
C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C
$$

$$
\bullet \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v
$$

Freivalds	(A, B, C)	From now on, we focus on the case where $AB \neq C$.	
6 Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly	$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$		
6 random column vector from $\{0,1\}^n$.	$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$		
7 The algorithm outputs $\{ABv \neq Cv, \text{ then output } AB \neq C$.	$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^*v$		
8 The algorithm outputs an incorrect answer	$ABv = Cv$	$ABv = Cv$	u_{n} if and only if $u_k = 0$ for all $k \in [n]$

• Choose $v = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid t \cap b \cap \text{uniform}$ $\left| \frac{1}{2} \right|$ to be a uniformly **•** Freivalds (A, B, C)

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

• C* = $\begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$

random column vector from $\{0,1\}^n$.

• Check if $ABv = Cv$.

random column vector from $\{0,1\}^n$.

Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$. $\qquad \bullet u =$

3, C)
\n
$$
\begin{pmatrix} v_1 \\ v_2 \\ v_n \end{pmatrix}
$$
\nto be a uniformly
\n
$$
\begin{pmatrix} v_1 \\ v_2 \\ v_n \end{pmatrix}
$$
\nto be a uniformly
\n
$$
\begin{pmatrix} c^* \\ c^* \\ c^* \\ c^* \end{pmatrix}
$$
\n
$$
\begin{pmatrix} c^* \\ c^* \\ c^* \\ c^* \end{pmatrix}
$$
\n
$$
\begin{pmatrix} c^* \\ c^* \\ c^* \\ c^* \end{pmatrix}
$$
\n
$$
\begin{pmatrix} c^* \\ c^* \\ c^* \\ c^* \end{pmatrix}
$$
\n
$$
\begin{pmatrix} v_1 \\ v_2 \\ v_1 \end{pmatrix} = AB - C
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_1 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_1 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_1 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_1 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_1 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\n
$$
\begin{pmatrix} u_1 \\ u_2 \\ u_2 \end{pmatrix} = C^*v
$$
\

$$
\bullet \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v
$$

•
$$
u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j
$$

• Choose $v = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid$ to be a uniformly $n/$ to be a uniformly **•** Freivalds (A, B, C)

•• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

•• $C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$

random column vector from $\{0,1\}^n$.

•• Check if $ABv = Cv$

random column vector from $\{0,1\}^n$.

Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

• If $ABv \neq Cv$, then output $AB \neq C$. $\qquad \bullet u =$

Freivalds
$$
(A, B, C)
$$

\n• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly
\nrandom column vector from $\{0,1\}^n$.
\n• Check if $ABv = Cv$.
\n• If $ABv = Cv$, then output $AB = C$.
\n• If $ABv = Cv$, then output $AB = C$.
\n• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.
\n• Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is fixed.
\n• After fixing this term, there is **exactly one choice** of v_j that makes $u_i = 0$.

$$
\bullet \quad u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v
$$

•
$$
u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j
$$

- Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_i\}$, this term is fixed.
- After fixing this term, there is **exactly one choice** of v_j that makes $u_i = 0.$

• Choose $v = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$ $\left| \begin{array}{c} 1 \end{array} \right|$ $\binom{2}{1}$ to be a uniformly $n/$ random column vector from $\{0,1\}^n$. . Check if $ABv = Cv$. • If $ABv = Cv$, then output $AB = C$. If $ABv \neq Cv$, then output $AB \neq C$. **•** Freivalds (A, B, C)

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

• $v_j = 0$ with probability $\frac{1}{2}$.

• $v_j = 1$ with probability $\frac{1}{2}$.

• Check if $ABv = Cv$, then output $AB = C$.

• If $ABv = Cv$, then out • $u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j$ 3, C)

At least one of them makes
 $v_j = 0$ with probability
 $\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly
 $v_j = 1$ with probability
 $\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$
 $\begin{pmatrix} v_2 \\ v_1 \end{pmatrix}$ to be a uniformly
 $\begin{pmatrix} v_1 \\ v_2 \$ At least one of them makes makes $u_i \neq 0$:

• $v_j = 0$ with probability $\frac{1}{2}$.

• $v_j = 1$ with probability $\frac{1}{2}$.

• $v_j = 1$ with probability $\frac{1}{2}$.

• v_j = 1 with probability $\frac{1}{2}$.
 \vdots
 \vdots
 \vdots • Choose $v = \begin{pmatrix} v_2 \\ i \\ i \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if $ABv = Cv$, **then** output $AB = C$.

• If $ABv \neq Cv$, **then** output $AB \neq C$.

• Since $AB \neq C$, there exist (i,j) such that Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is **fixed**. After fixing this term, there is **exactly one choice** of v_i that makes $u_i = 0$. \triangleright Pr[$u_i \neq 0$] $\geq \frac{1}{2}$ 1 2 $[u_k \neq 0 \text{ for some } k \in [n]\]$
 At least one of them makes makes $u_i \neq 0$:

• $v_j = 0$ with probability $\frac{1}{2}$.

• $v_j = 1$ with probability $\frac{1}{2}$. $2²$. $[u_k \neq 0 \text{ for some } k \in [n]]$
 \t{thm}

At least one of them makes makes $u_i \neq 0$:

• $v_j = 0$ with probability $\frac{1}{2}$.

• $v_j = 1$ with probability $\frac{1}{2}$. 2^{\degree} • $v_j = 1$ with probability $\frac{1}{2}$.

• Choose $v = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\left| \begin{array}{c} 1 \end{array} \right|$ $2 \mid t \cap b \cap \text{uniform}$ $\left| \frac{1}{2} \right|$ to be a uniformly . **• Freivalds** (A, B, C)

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly
 • Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly
 • Chock if $ABv = Cv$.
 • If $ABv = Cv$, **then** output $AB = C$.

• **If** $ABv \neq Cv$, **lds** (A, B, C)
 $y = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

om column vector from $\{0,1\}^n$.
 k if $ABv = Cv$.
 $Bv = Cv$, **then** output $AB = C$.
 $Bv \neq Cv$, **then** output $AB \neq C$.
 $AB \neq C$, there exist (i, j) such that 3, C)

{ v_1
 v_2
 v_n
 v_n to be a uniformly
 v_n
 $v = Cv$.
 hen output $AB = C$.
 hen output $AB \neq C$.
 then output $AB \neq C$.
 then output $AB \neq C$.
 thence exist (i, j) such that $c_{i,j}^* \neq 0$.
 thence exist

random column vector from $\{0,1\}^n$.

Check if $ABv = Cv$.

• If
$$
ABv = Cv
$$
, then output $AB = C$.

- If $ABv \neq Cv$, then output $AB \neq C$. \bigwedge
-

•
$$
u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j
$$

- Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is fixed.
- After fixing this term, there is **exactly one choice** of v_j that makes $u_i = 0$.

Freivalds(A, B, C)	
• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly	Pr[Freivalds' algorithm is successful] $\geq \frac{1}{2}$
random column vector from $\{0,1\}^n$.	
• Check if $ABv = Cv$, then output $AB = C$.	
• If $ABv = Cv$, then output $AB \neq C$.	
• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.	
• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.	
• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.	
• Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is fixed .	
• After fixing this term, there is exactly one choice of v_j that makes $u_i = 0$.	

1

2

Pr[Freivalds' algorithm is successful] $\geq \frac{1}{2}$

Technique: Principle of deferred decision

In the analysis of Freivalds' algorithm, we fix the variables $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$ and only consider the randomness in v_i . .

• Why are we allowed to do this?

Technique: Principle of deferred decision

In the analysis of Freivalds' algorithm, we fix the variables $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$ and only consider the randomness in v_i . .

• Why are we allowed to do this?

Principle of deferred decision:

• If we can show that $\Pr[\mathcal{E} \mid X = x] \geq p$ for every x, then $\Pr[\mathcal{E}] \geq p$.

 $\Pr[\mathcal{E}] = \sum_{x} \Pr[\mathcal{E} | X = x] \cdot \Pr[X = x] \ge p \cdot \sum_{x} \Pr[X = x] = p.$

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of at most $\frac{1}{2}$. 2^{7} .

Case $(AB = C)$:

• The algorithm answers $AB = C$ correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least $1/2$.
- The algorithm answers $AB = C$ with a probability of at most $1/2$.

successful with a probability of at least $\frac{1}{2}$. 2°

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of at most $\frac{1}{2}$. 2^{7} .

Case $(AB = C)$:

• The algorithm answers $AB = C$ correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least 1/2.
- The algorithm answers $AB = C$ with a probability of at most 1/2.

Claim: The error probability can be reduced to at most f by repeating the algorithm for $t = \left\lceil \log \frac{1}{f} \right\rceil$ times.

- If all t outputs are $AB = C$, return $AB = C$.
- Otherwise, return $AB \neq C$.

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of at most $\frac{1}{2}$. 2^{7} .

Case $(AB = C)$:

• The algorithm answers $AB = C$ correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least 1/2.
- The algorithm answers $AB = C$ with a probability of at most $1/2$.

Claim: The error probability can be reduced to at most f by repeating the algorithm for $t = \left\lceil \log \frac{1}{f} \right\rceil$ times.

- If all t outputs are $AB = C$, return $AB = C$.
- Otherwise, return $AB \neq C$.
- If $AB = C$, Freivalds' algorithm always answers $AB = C$ correctly.
- If $AB \neq C$, the probability that Freivalds' algorithm answers $AB = C$ for all $t =$ $\log \! \frac{1}{f} \Big|$ iterations is at most $\frac{1}{2^t} \leq f$.

Question 1 @ VisuAlgo online quiz
Who is the **Master of Algorithms** pictured below?

Who is the **Master of Algorithms** pictured below?

- László Babai
- Rūsiņš Freivalds
- Leonid Levin
- Volker Strassen

- There are n different types of coupons.
- Once you obtain all n types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons?

- There are n different types of coupons.
- Once you obtain all n types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons? \overline{m}

Balls and bins:

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?

- There are n different types of coupons.
- Once you obtain all n types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons? \overline{m}

Balls and bins:

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?
- *m* balls \leftrightarrow *m* cereal boxes.
- *n* bins \leftrightarrow *n* coupons.
- Every bin contains at least one ball \leftrightarrow All n types of coupons have been collected.

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?
- Consider one bin. **• Throw m balls into n bins randomly and independently.**
• What is the probability that every bin contains at least one ball?
• Consider one bin.
• The probability that the bin contains zero balls is $\left(1-\frac{1}{n}\right)^m \leq e$ $n/\sqrt{2}$ $\vert m \vert \le e^{-\frac{m}{n}}$. \overline{n} . • Throw *m* balls into *n* bins randomly and independently.
• What is the probability that every bin contains at least one ball?
• Consider one bin.
• The probability that the bin contains zero balls is $\left(1-\frac{1}{n}\right)^m \leq$

 $nJ = \infty$ $\sum_{n=1}^{\infty} n e^{-\frac{m}{n}}$. \overline{n} .

- Throw m balls into n bins randomly and independently.
- What is the probability that every bin contains at least one ball?

The probability is at most $1/n$ if $m \ge 2n \lceil \ln n \rceil$.

- There are n different types of coupons.
- Once you obtain all n types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons?

Answer: Buying $m = 2n \lceil \ln n \rceil \in \Theta(n \log n)$ boxes guarantees a success probability of at least $1 - \frac{1}{n}$. n | .

- *m* balls \leftrightarrow *m* cereal boxes.
- *n* bins \leftrightarrow *n* coupons.
- Every bin contains at least one ball \leftrightarrow All n types of coupons have been collected.

Technique: Union bound

- You want to upper bound the probability that a bad event $\mathcal E$ occurs.
- You know that $\mathcal{E} = \mathcal{E}_1 \vee \mathcal{E}_2 \vee \cdots \vee \mathcal{E}_n$.
- Union bound:
	- $Pr[\mathcal{E}] = Pr[\mathcal{E}_1 \vee \mathcal{E}_2 \vee \cdots \vee \mathcal{E}_n] \leq Pr[\mathcal{E}_1] + Pr[\mathcal{E}_2] + \cdots + Pr[\mathcal{E}_n].$
- To make sure that $\Pr[\mathcal{E}] \leq f$, it suffices that $\Pr[\mathcal{E}_i] \leq \frac{f}{n}$ for each $i \in [n]$. n^{101} case ϵ is proportional to ϵ for each $i \in [n]$.

Expected value

• Expected value:

• $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$, where the sum ranges over all possible outcomes x of the random variable X .

- Markov inequality:
	- If X is a non-negative random variable and $a > 0$, then

$$
\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.
$$

- Markov inequality:
	- If X is a non-negative random variable and $a > 0$, then

$$
\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.
$$

• Proof:

$$
\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x] \ge \sum_{x \ge a \cdot \mathbb{E}[X]} x \cdot \Pr[X = x]
$$

\n
$$
\ge \sum_{x \ge a \cdot \mathbb{E}[X]} a \cdot \mathbb{E}[X] \cdot \Pr[X = x]
$$

\n
$$
= a \cdot \mathbb{E}[X] \cdot \sum_{x \ge a \cdot \mathbb{E}[X]} \Pr[X = x]
$$

\n
$$
= a \cdot \mathbb{E}[X] \cdot \Pr[X \ge a \cdot \mathbb{E}[X]] \quad \triangleright \quad \Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}
$$

• Markov inequality:

• If X is a non-negative random variable and $a > 0$, then

$$
\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.
$$

• Application:

The expected runtime of A is at most t

The runtime of A is at most $100 \cdot t$ with probability at least 0.99

Pr[runtime $\geq 100 \cdot t$] \leq Pr[runtime $\geq 100 \cdot$ expected runtime] $\leq \frac{1}{100}$ ଵ

- Markov inequality:
	- If X is a non-negative random variable and $a > 0$, then

$$
\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.
$$

• Application:

The time complexity of A is $O(n \log n)$ with probability at least 0.99

Technique: Linearity of expectation

- Linearity of expectation:
	- If $X = A + B$, then $\mathbb{E}[X] = \mathbb{E}[A] + \mathbb{E}[B]$.
	- More generally, if $X = \sum_{i=1}^n X_i$, then $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i].$

Technique: Linearity of expectation

• Linearity of expectation:

- If $X = A + B$, then $\mathbb{E}[X] = \mathbb{E}[A] + \mathbb{E}[B]$.
- More generally, if $X = \sum_{i=1}^n X_i$, then $\mathbb{E}[X] = \sum_{i=1}^n \mathbb{E}[X_i].$

Technique: Linearity of expectation:
\n• If
$$
X = A + B
$$
, then $\mathbb{E}[X] = \mathbb{E}[A] + \mathbb{E}[B]$.
\n• More generally, if $X = \sum_{i=1}^{n} X_i$, then $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$.
\n• **Proof:** $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x] = \sum_{x} x \cdot \Pr[A + B = x]$
\n $= \sum_{x} \sum_{y} x \cdot \Pr[(A = x - b) \land (B = b)] \qquad \boxed{\Pr[A + B = x] = \sum_{y} \Pr[(A = x - b) \land (B = b)]}$
\n $= \sum_{x} \sum_{y} (a + b) \cdot \Pr[(A = a) \land (B = b)] + \sum_{y} \sum_{y} b \cdot \Pr[(A = a) \land (B = b)]$
\n $= \sum_{x} \sum_{y} a \cdot \Pr[(A = a) \land (B = b)] + \sum_{y} \sum_{y} b \cdot \Pr[(A = a) \land (B = b)]$
\n $= \sum_{x} a \cdot \sum_{y} \Pr[(A = a) \land (B = b)] + \sum_{y} b \cdot \sum_{x} \Pr[(A = a) \land (B = b)]$
\n $= \sum_{x} a \cdot \Pr[A = a] + \sum_{y} b \cdot \Pr[B = b]$
\n $= \mathbb{E}[A] + \mathbb{E}[B]$

Technique: Indicator random variables

- \cdot Let $\mathcal E$ be an event.
- The indicator random variable $\mathbf{1}_{\varepsilon}$ for ε is defined as

$$
\mathbf{1}_{\varepsilon} = \begin{cases} 1, & \text{if } \varepsilon \text{ occurs,} \\ 0, & \text{otherwise.} \end{cases}
$$

• Observation: $\mathbb{E}[\mathbf{1}_{\varepsilon}]=\Pr[\varepsilon].$

Hashing

• Hash table:

• A is an array of length n .

• Hash function:

- h is a mapping from some universe U to the indices of the array $\{1,2,...,n\}$.
- Insert(v): If v is not in $A[h(v)]$, store v in $A[h(v)]$.
- Search(v): Check if v is in $A[h(v)]$.
- Delete(v): If v is in $A[h(v)]$, remove v from $A[h(v)]$.

Chain hashing :

- A linked list is created if a position contains more than one element.
- The cost of an operation is linear in the size of the linked list.

• Hash table:

• A is an array of length n .

• Hash function:

- h is a mapping from some universe U to the indices of the array $\{1,2,...,n\}$.
- Insert(v): If v is not in $A[h(v)]$, store v in $A[h(v)]$.
- Search(v): Check if v is in $A[h(v)]$.
- Delete(v): If v is in $A[h(v)]$, remove v from $A[h(v)]$.

• Throw m balls into n bins randomly and independently.

<u> 1989 - Johann Harry Barn, mars ar breist ar breis</u>

• Throw m balls into n bins randomly and independently.

Question 2 @ VisuAlgo online quiz
• _{Consider one bin.}

- Consider one bin.
- What is the expected number of balls in the bin?

- 1 + $\frac{m}{n}$ $\frac{1}{n}$ $n \sim n$ ଵ \boldsymbol{n}
- max $\left\{1,\frac{m}{n}\right\}$ $n \int$

Balls and bins:

• Throw m balls into n bins randomly and independently.

Question 3 @ VisuAlgo online quiz
• _{Consider one ball.}

- Consider one ball.
- What is the expected number of balls in the bin that contains the selected ball?
	- $\frac{m}{n}$ \boldsymbol{n} • 1 + $\frac{m}{n}$ \boldsymbol{n} • 1 + $\frac{m}{n}$ - $\frac{1}{n}$
	- max $\left\{1,\frac{m}{n}\right\}$ $n \int$

Balls and bins:

• Throw m balls into n bins randomly and independently.

 $n \sim n$

ଵ

 \boldsymbol{n}

Quick sort

• Input: an array $A[1..n]$ of n numbers. \longleftarrow **Assume that all numbers are distinct.**

• Partition:

- Select a number in $A[1..n]$ as the pivot.
- Rearrange the array to satisfy the condition: $A = [\dots]$

• Recursion:

• Recursively sort A_S and A_L .

Randomized quick sort

• Input: an array $A[1..n]$ of n numbers. \leftarrow Assume that all numbers are distinct.

uniformly at random

• Partition:

- Select a number in $A[1..n]$ as the **pivot**.
- Rearrange the array to satisfy the condition: $A = \lceil$

• Recursion:

• Recursively sort A_S and A_L .

Randomized quick sort

• Input: an array $A[1..n]$ of n numbers. \longleftarrow . ∀ ∈ ௌ ssume that all numbers are distinct.
 A_S A_L
 \dots \dots \dots \vdots \vdots mbers are distinct.
 A_L
 $\dots \dots \dots \dots \dots \dots$
 $\forall x \in A_L, x \ge \text{pivot}$ re distinct.
 A_L

.]

, $x \geq$ pivot **Assume that all numbers are distinct.**

uniformly at random

 S and H_L

• Partition:

- Select a number in $A[1..n]$ as the **pivot**.
- Rearrange the array to satisfy the condition: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

This step requires comparing the **pivot** with all other numbers.

• Recursion:

• Recursively sort A_S and A_L .

Observation: running time of quick sort $\in \Theta$ (number of comparisons)

- $(a_1, a_2, ..., a_n)$ = the numbers of A in the sorted order.
- $X_{i,j}$ = the number of comparisons made between a_i and a_j .

Just need to know how to calculate this.

• Observation:

- The number $X_{i,j}$ of comparisons made between a_i and a_j is either 0 or 1.
- We write ${\cal E}_{i,j}$ to denote the event $X_{i,j}=1.$.
	- $\Pr \bigl[{\cal E}_{i,j}\bigr]=\mathbb{E}\bigl[X_{i,j}\bigr] \longleftarrow X_{i,j}$ is the indicator random variable for ${\cal E}_{i,j}.$

• Observation:

- The number $X_{i,j}$ of comparisons made between a_i and a_j is either 0 or 1.
- We write ${\cal E}_{i,j}$ to denote the event $X_{i,j}=1.$.
	- $\Pr \big[\mathcal{E}_{i,j} \big] = \mathbb{E} \big[X_{i,j} \big] \iff X_{i,j}$ is the indicator random variable for $\mathcal{E}_{i,j}.$.

• **Claim:** For any
$$
1 \le i < j \le n
$$
, $Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

A comparison is made between a_i and a_j .

Analysis of randomized quick sort of randomized quick so

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo \rm sort
, ..., a_j) must belong to the same array.

• Claim: For any $1 \leq i < j \leq n$, $Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

A comparison is made between a_i and a_j .

Analysis of randomized quick sort of randomized quick so
 $\frac{1}{(a_i, \ldots, a_j)}$ is selected as a pivot, the numbers in (a_i, \ldots, a_j)
 $\frac{1}{(a_i, \ldots, a_j)}$

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo \rm sort
, ..., a_j) must belong to the same array.

.

Analysis of randomized quick
\nBefore a number in
$$
(a_i, ..., a_j)
$$
 is selected as a pivot, the numbers in $(a_i$
\nThe first number chosen
\nas a pivot in $(a_i, ..., a_j)$:
\n
$$
\begin{bmatrix}\na_i \text{ or } a_j \\
\text{not } a_i \text{ or } a_j\n\end{bmatrix}
$$

• **Claim:** For any
$$
1 \le i < j \le n
$$
, $Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.
A comparison is made between a_i and a_j .

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo

.

• **Claim:** For any
$$
1 \le i < j \le n
$$
, $Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.
A comparison is made between a_i and a_j .

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo

• **Claim:** For any
$$
1 \le i < j \le n
$$
, $Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

A comparison is made between a_i and a_j .

Analysis of randomized quick sort of randomized quick so

, ..., a_j) is selected as a pivot, the numbers in $(a_i, ..., a_j)$
 a_i or a_j The algorithm will compare the pair

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo

• Claim: For any $1 \leq i < j \leq n$, $Pr[\mathcal{E}_{i,j}] = \frac{2}{i - i + 1}$.

A comparison is made between a_i and a_i . .

Before a number in $(a_i,...,a_j)$ is selected as a pivot, the numbers in $(a_i,...,a_j)$ must belo

Analysis of randomized quick sort\n
$$
\mathbb{E}[\text{x}_{i,j}] = \Pr[\varepsilon_{i,j}] = \frac{2}{j-i+1}
$$
\n
$$
\mathbb{E}[\text{number of comparisons}] = \sum_{1 \le i < j \le n} \mathbb{E}[X_{i,j}] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}
$$
\n
$$
= 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}
$$
\n
$$
= 2 \sum_{i=1}^{n} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1} \right) \in O(n \log n)
$$
\n
$$
O(\log n)
$$

Theorem: The expected running time of randomized quick sort is $O(n \log n)$.

Markov inequality
Randomized quick sort finishes in $O(n \log n)$ time with probability at least 0.99.

Two types of randomized algorithms vo types of randomized algorithr

¹ The output is always correct.

• The time complexity guarantee is only i<mark>n expectation.</mark>

- Las Vegas algorithms:
	-
	-
- Monte Carlo algorithms:
	- The output is correct only with some probability.
	- The time complexity guarantee holds with probability 1.

Which one is stronger?

Randomized quick sort

Freivalds' algorithm

Two types of randomized algorithms vo types of randomized algorithr

¹ The output is always correct.

• The time complexity guarantee is only i<mark>n expectation.</mark>

- Las Vegas algorithms:
	-
	-
- Monte Carlo algorithms:
	- The output is correct only with some probability.
	- The time complexity guarantee holds with probability 1 .

Which one is stronger?

We can always turn a Las Vegas algorithm into a Monte Carlo algorithm via Markov inequality.

Freivalds' algorithm

Randomized quick sort

 $DisCUSSIONS$ Average-case running time of a deterministic version of an algorithm

They can be very different (in general).

Expected running time of a randomized version of an algorithm

Discussions

Average-case running time of a deterministic version of an algorithm

They can be very different (in general).

Expected running time of a randomized version of an algorithm

Can we apply the analysis of randomized quick sort to do the average-case analysis of deterministic quick sort, and vice versa?

Average-case number of comparisons for deterministic quick sort

Are they the same (not just asymptotically)?

Expected number of comparisons for randomized quick sort

Acknowledgement

• The slides are modified from previous editions of this course and similar course elsewhere. **Example Change School**
 Example 2014
 **Example School Schools Change Schools Schools Schools Schools Schools

Example Schools Change - Arnab Bhattacharya**

• Arnab Bhattacharya

• Diptarka Chakraborty

• Yi-Jun Chang

• List of credits:

- Surender Baswana
- Arnab Bhattacharya
-
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Wing-Kin Sung