CS3230 — Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 5: Randomized Algorithms

Randomized algorithms

always correct

Randomness

—> correct with

Randomized: probability 0.99

Deterministic: — [Algorithm} —

[Algorithm 1 —

LR

Randomized algorithms

Deterministic: [Algorithm 1 always correct
:] correct wi
Randomized: [Algorithm } orobability 0.99

Goal: Utilize randomization to develop algorithms that are more efficient or simpler
than their deterministic counterparts, at the cost of allowing a small error probability.

Randomized algorithms

Deterministic: — [Algorithm} —

Randomness .
Randomized: 5 [Algorithm 1 correct with

| © probability 0.99
\ J

/ Y
This holds for every input.

» Still do a worst-case analysis over all possible inputs.
* Randomized complexity i\average-case complexity.}
|
Here algorithm can perform badly for some inputs.

always correct

|
U

Verification of matrix multiplication

e Given three n X n matrices 4, B, and C, check if AB = C.

* A naive algorithm:
* Calculate AB using a matrix multiplication algorithm.

Verification of matrix multiplication

e Given three n X n matrices 4, B, and C, check if AB = C.

* A naive algorithm:
* Calculate AB using a matrix multiplication algorithm.

* The time complexity of matrix multiplication:
* Basic algorithm: 0(n?).

e Strassen’s algorithm: 0 (n?8%7-),

Question: Can we do better?

Freivalds” algorithm

Freivalds(4, B, C)

51
v For each i € [n] independently:
e Choosev =| .* | to be a uniformi 1
: Y * v; = 0 with probability >
Un * v; = 1 with probability %

random column vector from {0,1}™.

Freivalds” algorithm

Freivalds(4, B, C)
1

%
* Choosev = ;2 to be a uniformly

vn
random column vector from {0,1}".
e Checkif ABv = Cv.

For each i € [n] independently:
* v; = 0 with probability %

* v; = 1 with probability %

This can be done in 0(n?) time via
three matrix-vector multiplication.

Freivalds” algorithm

Freivalds(4, B, C)

U1
v, . For each i € [n] independently:
* Choosev =| ." [tobeauniformly « v, = 0 with probability %
Un * v; = 1 with probability %
random column vector from {0,1}".
e Checkif ABv = Cv. This can be done in 0(n?) time via
« If ABv = Cv, then output AB = C. three matrix-vector multiplication.

 If ABv # Cv, then output AB #+ C.

Analysis of Freivalds” algorithm

Freivalds(4, B, C) e If AB = C, then ABv = Cv, so the algorithm always
51 decides AB = C correctly.
v

* Choosev = :2 to be a uniformly
U * From now on, we focus on the case where AB # C.

random column vector from {0,1}™.
e Checkif ABv = Cv.
 If ABv = Cv, then output AB = C.
 If ABv + Cv, then output AB + C.

Analysis of Freivalds” algorithm

Freivalds(4, B, C) * From now on, we focus on the case where AB # C.
51
v XL o*
* Choosev = :2 to be a uniformly 1,1 C1,n
' ccr=: ~ i |=4B-cC
vn C‘;kll ces C;;n
random column vector from {0,1}™. ’
* Checkif ABv = Cv. Uy
 If ABv = Cv, then output AB = C. Uy .
« If ABv # Cv, then output AB # C. u=|{ . |=C

Analysis of Freivalds” algorithm

Freivalds(4, B, C) * From now on, we focus on the case where AB # C.
51
v XL o*
* Choosev = :2 to be a uniformly 1,1 C1,n
' ccr=: ~ i |=4B-cC
vn C‘;kll ces C;;n
random column vector from {0,1}™. ’
* Checkif ABv = Cv. Uy
 If ABv = Cv, then output AB = C. Uy .
« If ABv # Cv, then output AB # C. u=|{ . |=C
uTl

The algorithm outputs

] if and only if ABv = Cv if and only if u, = 0forallk € [n]
an incorrect answer

Pr[Freivalds’ algorithm is successful] = Pr[uk #+ 0 forsome k € [n]]

Analysis of Freivalds” algorithm

Freivalds(4, B, C) * From now on, we focus on the case where AB # C.
1
v * ver ¥
« Choosev = | .° | to be a uniformly 1,1 C1,n
’ e C*=| : " : =AB - C
n Cni " Cnn
random column vector from {0,1}". ’
* Checkif ABv = Cv. Uy
 If ABv = Cv, then output AB = C. Uy .
« If ABv # Cv, then output AB # C. cu=| . [=C
un

The algorithm outputs

- if and only if ABv = Cv if and only if u, = O0forallk € [n]
an incorrect answer

Pr[Freivalds’ algorithm is successful] = Pr[uk #+ 0 forsome k € [n]]

Analysis of Freivalds” algorithm

Freivalds(4, B, () * From now on, we focus on the case where AB # (.
U1
% * L X
« Choosev = | .° | to be a uniformly 1,1 C1,n
’ e CT = : " : | =AB—-C
n Cni " Cnn
random column vector from {0,1}". ’
* Checkif ABv = Cv. Uy
 If ABv = Cv, then output AB = C. Uy .
« If ABv # Cv, then output AB # C. cu=\| . [=Cv
Un

* Since AB # C, there exist (i,) such that ¢;; # 0.
* U =V F U+ v+ v = () ¢

Pr[Freivalds’ algorithm is successful] = Pr[uk #+ 0 forsome k € [n]]

Analysis of Freivalds” algorithm

Freivalds(4, B, C) * From now on, we focus on the case where AB # C.
51
v XL o*
* Choosev = :2 to be a uniformly 1,1 C1,n
- ecr=|: ~ i |=4B-C
Vn Cr*ll C;;n
random column vector from {0,1}™. ’
* Checkif ABv = Cv. Uy
 If ABv = Cv, then output AB = C. Uy .
« If ABv # Cv, then output AB # C. u=|{ . |=C
uTl

Since AB # C, there exist (i, j) such that ¢;; # 0.
* U =V F U+ v+t v = () ¢

* Once we reveal the random numbers {v{,v,, ..., v} \ {vj}, this term is fixed.
After fixing this term, there is exactly one choice of v; that makes u; = 0.

Pr[Freivalds’ algorithm is successful] = Pr[uk #+ 0 forsome k € [n]]

Analysis of Freivalds” algorithm

Freivalds(4, B, C) At least one of them makesi makes u; # 0:
(2] * v; = 0 with probability .
v ° , — i HH l

« Choosev = | .° | to be a uniformly v; = 1 with probability -.
vn

random column vector from {0,1}™.
e Checkif ABv = Cv.
 If ABv = Cv, then output AB = C.
 If ABv + Cv, then output AB + C.

Since AB # C, there exist (i, j) such that ¢;; # 0.
* U =V F U+ v+t v = () ¢

* Once we reveal the random numbers {v{,v,, ..., v} \ {vj}, this term is fixed.
After fixing this term, there is exactly one choice of v; that makes u; = 0.

N =

Pr[ui + 0] =

Pr[Freivalds’ algorithm is successful] = Pr[uk #+ 0 forsome k € [n]]

Analysis of Freivalds” algorithm

Freivalds(4, B, C)
1

%
* Choosev = ;2 to be a uniformly

Un
random column vector from {0,1}".
e Checkif ABv = Cv.
 If ABv = Cv, then output AB = C.
 If ABv # Cv, then output AB #+ C.

Since AB # C, there exist (i, j) such that ¢;; # 0.
Ui =CiqV1 + ¢V + o+ ¢ v+t v = (L) 6y

Once we reveal the random numbers {v,, v,, ..., v, } \ {vj}, this term is fixed.

After fixing this term, there is exactly one choice of v; that makes u; = 0.

Pr[Freivalds’ algorithm is successful] >

Pr[ui * 0] =

N =

DN =

Technique: Principle of deferred decision

In the analysis of Freivalds’ algorithm, we fix the variables {v,, v,, ..., v,,} \ {vj} and
only consider the randomness in v;.

* Why are we allowed to do this?

Technique: Principle of deferred decision

In the analysis of Freivalds’ algorithm, we fix the variables {v, vy, ..., v} \ {vj} and
only consider the randomness in v;.

* Why are we allowed to do this?

Principle of deferred decision:
 If we can show that Pr[€ | X = x] = p for every x, then Pr[€] > p.

Pri€] =),Prl| X =x]-Pr[X=x]=>p), Pr[X =x] =p.

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most >

Case (AB = C): successful with a probability of at least %
* The algorithm answers AB = C correctly.

Case (AB # C):
* The algorithm answers AB # C with a probability of at least 1/2.
* The algorithm answers AB = C with a probability of at most 1/2.

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most >

Case (AB = C):
* The algorithm answers AB = C correctly.

Case (AB # C):
* The algorithm answers AB # C with a probability of at least 1/2.
* The algorithm answers AB = C with a probability of at most 1/2.

Claim: The error probability can be reduced to at most f by
repeating the algorithm for t = [log%] times.

e |Ifall t outputs are AB = C, return AB = C.
* Otherwise, return AB # C.

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most >

Case (AB = C): * If AB = C, Freivalds’ algorithm always

e The algorithm answers AB = C correctly. answers AB = C correctly.

Case (AB # C):
* The algorithm answers AB # C with a probability of at least 1/2.
* The algorithm answers AB = C with a probability of at most 1/2.

* If AB # C, the probability that Freivalds’
algorithm answers AB = C forall t =

1]. . 1
[log]—c] iterations is at most 7 < f.

Claim: The error probability can be reduced to at most f by
repeating the algorithm for t = [log%] times.

e |Ifall t outputs are AB = C, return AB = C.
* Otherwise, return AB # C.

Question 1 @ VisuAlgo online quiz

Who is the Master of Algorithms pictured below?
* Lasz|6 Babai
* Rusins Freivalds
* Leonid Levin

e Volker Strassen

Coupon collector’s problem

There are n different types of coupons.

Once you obtain all n types of coupons, you may receive a prize.

Each box of cereals contains a random coupon.

How many boxes must you buy to collect all n types of coupons?

Coupon collector’s problem

There are n different types of coupons.

Once you obtain all n types of coupons, you may receive a prize.

Each box of cereals contains a random coupon.

How many boxes must you buy to collect all n types of coupons?
m

Balls and bins:
* Throw m balls into n bins randomly and independently.
 What is the probability that every bin contains at least one ball?

Coupon collector’s problem

There are n different types of coupons.

Once you obtain all n types of coupons, you may receive a prize.

Each box of cereals contains a random coupon.

How many boxes must you buy to collect all n types of coupons?
m

Balls and bins:
* Throw m balls into n bins randomly and independently.
 What is the probability that every bin contains at least one ball?

* m balls <> m cereal boxes.
* nbins < n coupons.
* Every bin contains at least one ball <> All n types of coupons have been collected.

Balls and bins

* Throw m balls into n bins randomly and independently.
* What is the probability that every bin contains at least one ball?

Balls and bins

* Throw m balls into n bins randomly and independently.
* What is the probability that every bin contains at least one ball?

* Consider one bin.
m

m
* The probability that the bin contains zero balls is (1 — %) <e n.

Useful inequality: 1 + x < e*

Balls and bins

* Throw m balls into n bins randomly and independently.
* What is the probability that every bin contains at least one ball?

e Consider one bin.
. 1\™ _m
* The probability that the bin contains zero balls is (1 — ;) <e n.

m

n .

. - . : . 1\™
Union bound: The probability that at least one bin contains zero balls is at most n (1 — ;) < ne

Balls and bins

* Throw m balls into n bins randomly and independently.
* What is the probability that every bin contains at least one ball?

* Consider one bin.
m

m
* The probability that the bin contains zero balls is (1 — %) <e n.

m

m
Union bound: The probability that at least one bin contains zero balls is at most n (1 — %) <ne n.

The probability is at most 1/n if m = 2n[Inn|.

Coupon collector’s problem

There are n different types of coupons.

Once you obtain all n types of coupons, you may receive a prize.

Each box of cereals contains a random coupon.

How many boxes must you buy to collect all n types of coupons?

Answer: Buying m = 2n[Inn] € ©(nlogn) boxes guarantees a success probability of at least 1 — %

* m balls <> m cereal boxes.
* nbins < n coupons.
* Every bin contains at least one ball <> All n types of coupons have been collected.

Technigue: Union bound

You want to upper bound the probability that a bad event € occurs.

You knowthatE =& VE, V-V E,.

Union bound:
 Pr[€] =Pr[E; VE, V-V E,] <Pr[€;] +Pr[&,] + -+ Pr[&,].

* To make sure that Pr[€] < f, it suffices that Pr[&;] < %for eachi € [n].

Expected value

* Expected value:

* E[X] =), x:Pr[X = x], where the sum ranges over
all possible outcomes x of the random variable X.

Technique: Markov inequality

* Markov inequality:
* If X is a non-negative random variable and a > 0, then

PrX > a- E[X]] < -

Technique: Markov inequality

* Markov inequality:
* If X is a non-negative random variable and a > 0, then

PrX > a- E[X]] < -

* Proof:
E[X]=) x-Pr[X=x] = x - Pr[X = x]
Z xZ;[X]
> a - E[X]-Pr[X = x]
xza-E[X]
= a - E[X] Pr[X = x]
xza-E[X] 1
= a - E[X]-Pr[X > a- E[X]] PrlX > a- E[X]] < -

Technique: Markov inequality

* Markov inequality:
* If X is a non-negative random variable and a > 0, then

PrX > a- E[X]] < -

* Application:
The expected runtime of A is at most t

The runtime of A is at most 100 - t with probability at least 0.99

Pr[runtime > 100 - t] < Pr[runtime = 100 - expected runtime] < 1—(1)0

Technique: Markov inequality

* Markov inequality:
* If X is a non-negative random variable and a > 0, then

PrX > a- E[X]] < -

* Application:

The expected time complexity of A is O(nlogn)

The time complexity of A is 0(nlogn) with probability at least 0. 99

Technique: Linearity of expectation

* Linearity of expectation:
« If X = A + B, then E[X] = E[A] + E[B].
* More generally, if X =),I*; X;, then E[X] = Y1, E[X;].

Technique: Linearity of expectation

* Linearity of expectation:
« If X = A + B, then E[X] = E[A] + E[B].
* More generally, if X =),I*; X;, then E[X] = Y1, E[X;].

¢ PrOOf: E[X]sz-Pr[sz] =Zx-Pr[A+B=x]

X

=zzx-Pr[(A=x—b)/\(B=b)] Pr[A+B=x]=ZPr[(A=x—b)/\(B=b)]
x b b

:ZZ(a+b)-Pr[(A=a)A(B=b)] a=x—b
a b

=Zza-Pr[(A=a)/\(B=b)]+ZZb-Pr[(A=a)/\(B=b)]
a b b a
=Za-ZPr[(A=a)/\(B=b)]+Zb-ZPr[(A=a)/\(B=b)]
b b a

a

=Za-Pr[A=a]+Zb-Pr[B=b]

a

= E[A] + E[B]

Technique: Indicator random variables

* Let £ be an event.
* The indicator random variable 1, for £ is defined as

1. — 1, if £ occurs,
€710, otherwise.

* Observation: E[1.] = Pr[€&].

Hashing

* Hash table:
e Ais an array of length n.

e Hash function:
* his a mapping from some universe U to the indices of the array {1,2, ..., n}.

Insert(v): If vis not in A[h(v)], store vin A[h(v)].
Search(v): Check if visin A[h(V)].
Delete(v): If v is in A[h(v)], remove v from A[h(V)].

A linked list is created if a position contains more than one element.

Ch din h dsS h N g * The cost of an operation is linear in the size of the linked list.

* Hash table:
e Ais an array of length n.

e Hash function:
* his a mapping from some universe U to the indices of the array {1,2, ..., n}.

91 21

* Insert(v): If vis notin A[h(v)], store v in A[h(V)].
» Search(v): Checkif visin A[h(v)].
* Delete(v): If visin A[h(v)], remove v from A[h(v)].

36 10 24 17

12

O N O Ul A W N BB

Balls and bins

* Throw m balls into n bins randomly and independently.

with a uniformly random hash function h

Balls Bins
Hashing Elements to be stored Hash table
Coupon collector Cereal boxes Coupons

Balls and bins

* Throw m balls into n bins randomly and independently.

with a uniformly random hash function h

How to analyze this?

Number of balls in a bin

Balls Bins
Hashing Elements to be stored Hash table
Coupon collector Cereal boxes Coupons

Size of the linked list in an array slot

Cost of an operation

Question 2 @ VisuAlgo online quiz

* Consider one bin.
* What is the expected number of balls in the bin?

m
n
° 1 _|_m
n
m 1
T+
. max{l,m}
n

Balls and bins:
* Throw m balls into n bins randomly and independently.

Question 3 @ VisuAlgo online quiz

* Consider one ball.
* What is the expected number of balls in the bin that contains the selected ball?

o M
n
° 1+m
n
m 1
T+
. max{l,m}
n

Balls and bins:
* Throw m balls into n bins randomly and independently.

Quick sort

* Input: an array A[l. . n] of n numbers. Assume that all numbers are distinct.
* Partition:
. . Ag Ay
» Select a numberin A[1..n] as the pivot.
* Rearrange the array to satisfy the condition: A = [.................pivOot et e cev ol |
Vx € Ag, x < pivot Vx € A, x = pivot

* Recursion:
* Recursively sort Ag and 4; .

Randomized quick sort

* Input: an array A[l. . Tl] of n numbers. Assume that all numbers are distinct.

uniformly at random

* Partition: A A
. . S L
» Select a numberin A[1..n] as the pivot.
* Rearrange the array to satisfy the condition: A = [.................pivOt et es eev ot |
Vx € Ag, x < pivot Vx € Ap,x = pivot

* Recursion:
* Recursively sort Ag and A4;.

Randomized quick sort

* Input: an array A[l. . Tl] of n numbers. Assume that all numbers are distinct.

uniformly at random

* Partition:
| R Ag A,
» Select a numberin A[1..n] as the pivot. { | | { \ |
* Rearrange the array to satisfy the condition: A = [inOt]
This step requires comparing the pivot with all other numbers. Vx € Ag, x < pivot Vx € A;,x > pivot

* Recursion:
* Recursively sort Ag and A4;.

[Observation: running time of quick sort € ®(number of comparisons)]

Analysis of randomized quick sort

* (aq,a,, ...,a,) = the numbers of A in the sorted order.

* X; j = the number of comparisons made between a; and a;.

Linearity of expectation

E[number of comparisons| = Z E[Xi,j]

1<i<jsn

Just need to know how to calculate this.

Analysis of randomized quick sort

* Observation:
* The number X; ; of comparisons made between a; and q; is either 0 or 1.

* We write &; ; to denote the event X; ; = 1.
. Pr[Ei,j] — IE[XL-J-] X, j is the indicator random variable for ; ;.

Analysis of randomized quick sort

* Observation:
* The number X; ; of comparisons made between a; and q; is either 0 or 1.

* We write &; ; to denote the event X; ; = 1.
. Pr[Ei,j] — IE[XL-J-] X, j is the indicator random variable for ; ;.

2

* Claim: Forany1 <i<j<n, Pr[Si’j] = ar

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (al-, e aj) is selected as a pivot, the numbers in (al-, e aj) must belong to the same array.

2
j—i+1

* Claim: Forany1 <i<j<n, Pr[gi,j] =

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (al-, e aj) is selected as a pivot, the numbers in (al-, e aj) must belong to the same array.

Cli or Clj
The first number chosen
as a pivot in (al-, v aj):

not a; or q;

2
j—i+1

* Claim: Forany1 <i<j<n, Pr[gi,j] =

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (al-, e aj) is selected as a pivot, the numbers in (al-, e aj) must belong to the same array.

a; or The algorithm will compare the pivot with

. & j occurs.
The first number chosen all other numbers in the current array. ’

as a pivot in (al-, v aj):

not a; or q;

2
j—i+1

* Claim: Forany1 <i<j<n, Pr[gi,j] =

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (al-, e aj) is selected as a pivot, the numbers in (al-, e aj) must belong to the same array.

a; or The algorithm will compare the pivot with

. & j occurs.
The first number chosen all other numbers in the current array. ’
as a pivot in (ai, v aj):

a; and a; will belong to different

. . &; j does not occur.
arrays in the recursive calls. ’

not a; or q;

2
j—i+1

* Claim: Forany1 <i<j<n, Pr[gi,j] =

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (ai,) aj) is selected as a pivot, the numbers in (ai, . aj) must belong to the same array.

a; or a; The algorithm will compare the pivot with

_ & j occurs,
The first number chosen all other numbers in the current array. ’
as a pivot in (al-, v aj):

a; and a; will belong to different

. . €; j does not occur.
arrays in the recursive calls. ’

not a; or a;

. . The first number chosen as a
A comparison is made between a; and a;. o _
if and only if pivot In (ai, ...,aj) IS a; or a;.
2
j—i+1

e Claim: Forany 1 < i <j<n, Pr[gi,j] —

A comparison is made between a; and a;.

Analysis of randomized quick sort

Before a number in (ai,) aj) is selected as a pivot, the numbers in (ai, . aj) must belong to the same array.

Each number in (ai, . aj) is equally likely to
be the first one chosen as a pivot in (al-, e aj).

. . The first number chosen as a
A comparison is made between a; and a;. o _
if and only if pivot In (ai, ...,aj) IS a; or a;.
2
j=i+1’

e Claim: Forany 1 < i <j<n, Pr[gi,j] —

A comparison is made between a; and a;.

Analysis of randomized quick sort

2

E[X; ;] = Pr|&;,] =it

2
E[number of comparisons] = Z IE[XL-J-]= Z —

lay j—i+1
1si<jsn 1si<jsn
n n
=2) Y
i=1j=i+1j_l+1
n
=23 Ll eomiogn
— /L \273 n—i+1 niosn

Analysis of randomized quick sort

Theorem: The expected running time of randomized quick sort is O (nlogn).

Markov inequality

Randomized quick sort finishes in 0(nlogn) time with probability at least 0.99.

Two types of randomized algorithms

e Las Vegas algorithms:
* The output is always correct.

: . . i i Randomized quick sort
* The time complexity guarantee is only in expectation.

* Monte Carlo algorithms:
* The output is correct only with some probability.
* The time complexity guarantee holds with probability 1.

Freivalds’ algorithm

Which one is stronger?

Two types of randomized algorithms

e Las Vegas algorithms:
* The output is always correct.

: . . i i Randomized quick sort
* The time complexity guarantee is only in expectation.

* Monte Carlo algorithms:
* The output is correct only with some probability.
* The time complexity guarantee holds with probability 1.

Freivalds’ algorithm

Which one is stronger?

We can always turn a Las Vegas algorithm into a Monte Carlo algorithm via Markov inequality.

[Average-case running time of a deterministic version of an algorithm]

Discussions

They can be very different (in general).

[Expected running time of a randomized version of an algorithm]

[Average-case running time of a deterministic version of an algorithm]

Discussions

They can be very different (in general).

[Expected running time of a randomized version of an algorithm]

Can we apply the analysis of randomized quick sort to do the
average-case analysis of deterministic quick sort, and vice versa?

[Average-case number of comparisons for deterministic quick sort]

Are they the same (not just asymptotically)?

[Expected number of comparisons for randomized quick sort]

Acknowledgement

* The slides are modified from previous editions of this course and similar
course elsewhere.

e List of credits:

* Surender Baswana
Arnab Bhattacharya
Diptarka Chakraborty
Yi-Jun Chang
Erik Demaine
Steven Halim
Sanjay Jain
Wee Sun Lee
Charles Leiserson
Hon Wai Leong
Wing-Kin Sung

