CS3230 – Design and Analysis of Algorithms (S1 AY2024/25)

Lecture 5: Randomized Algorithms

Randomized algorithms

Randomized algorithms

Goal: Utilize <u>randomization</u> to develop algorithms that are <u>more efficient</u> or <u>simpler</u> than their deterministic counterparts, at the cost of allowing a <u>small error probability</u>.

Randomized algorithms

- Still do a worst-case analysis over all possible inputs.
- Randomized complexity ≠ average-case complexity.

Here algorithm can perform badly for some inputs.

Verification of matrix multiplication

• Given three $n \times n$ matrices A, B, and C, check if AB = C.

• A naïve algorithm:

• Calculate *AB* using a matrix multiplication algorithm.

Verification of matrix multiplication

• Given three $n \times n$ matrices A, B, and C, check if AB = C.

• A naïve algorithm:

- Calculate *AB* using a matrix multiplication algorithm.
- The time complexity of matrix multiplication:
 - Basic algorithm: $O(n^3)$.
 - Strassen's algorithm: $O(n^{2.807...})$.

Question: Can we do better?

Freivalds' algorithm

For each $i \in [n]$ independently: • $v_i = 0$ with probability $\frac{1}{2}$. • $v_i = 1$ with probability $\frac{1}{2}$.

Freivalds' algorithm

For each $i \in [n]$ independently: • $v_i = 0$ with probability $\frac{1}{2}$. • $v_i = 1$ with probability $\frac{1}{2}$.

This can be done in $O(n^2)$ time via three matrix-vector multiplication.

Freivalds' algorithm

- Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly random column vector from $\{0,1\}^n$.
- Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

For each $i \in [n]$ independently: • $v_i = 0$ with probability $\frac{1}{2}$. • $v_i = 1$ with probability $\frac{1}{2}$.

This can be done in $O(n^2)$ time via three matrix-vector multiplication.

Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

- Check if ABv = Cv.
- If ABv = Cv, then output AB = C.
- If $ABv \neq Cv$, then output $AB \neq C$.

- If AB = C, then ABv = Cv, so the algorithm always decides AB = C correctly.
- From now on, we focus on the case where $AB \neq C$.

Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

- Check if ABv = Cv.
- If ABv = Cv, then output AB = C.
- If $ABv \neq Cv$, then output $AB \neq C$.

• From now on, we focus on the case where $AB \neq C$.

•
$$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$$

•
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v$$

Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

• From now on, we focus on the case where $AB \neq C$.

•
$$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$$

•
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v$$

The algorithm outputs
an **incorrect** answer
$$\stackrel{\text{if and only if}}{\longleftarrow}$$
 $ABv = Cv$ $\stackrel{\text{if and only if}}{\longleftarrow}$ $u_k = 0$ for all $k \in [n]$

Pr[Freivalds' algorithm is successful] = **Pr** $[u_k \neq 0$ for some $k \in [n]$]

Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

• From now on, we focus on the case where $AB \neq C$.

•
$$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$$

•
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v$$

The algorithm outputs
an **incorrect** answer
$$(if and only if)$$
 $(ABv = Cv)$ $(if and only if)$ $(u_k = 0 \text{ for all } k \in [n])$

Pr[Freivalds' algorithm is successful] = **Pr**[$u_k \neq 0$ for some $k \in [n]$] Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

• From now on, we focus on the case where $AB \neq C$.

•
$$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$$

•
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v$$

• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.

•
$$u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j$$

Pr[Freivalds' algorithm is successful] = **Pr**[$u_k \neq 0$ for some $k \in [n]$] Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

• From now on, we focus on the case where $AB \neq C$.

•
$$C^* = \begin{pmatrix} c_{1,1}^* & \cdots & c_{1,n}^* \\ \vdots & \ddots & \vdots \\ c_{n,1}^* & \cdots & c_{n,n}^* \end{pmatrix} = AB - C$$

•
$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = C^* v$$

• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.

•
$$u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j$$

- Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is **fixed**.
- After fixing this term, there is **exactly one choice** of v_i that makes $u_i = 0$.

Pr[Freivalds' algorithm is successful] = **Pr** $[u_k \neq 0$ for some $k \in [n]$]

Analysis of Freivalds' algorithm

Freivalds(A, B, C) • Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

• If $ABv \neq Cv$, then output $AB \neq C$.

At least one of them makes makes $u_i \neq 0$:

- $v_j = 0$ with probability $\frac{1}{2}$.
- $v_j = 1$ with probability $\frac{1}{2}$.

• Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.

•
$$u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j$$

- Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is **fixed**.
- After fixing this term, there is **exactly one choice** of v_i that makes $u_i = 0$.

>
$$\mathbf{Pr}[u_i \neq 0] \ge \frac{1}{2}$$

Pr[Freivalds' algorithm is successful] = **Pr** $[u_k \neq 0$ for some $k \in [n]$]

Analysis of Freivalds' algorithm

• Choose $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ to be a uniformly

random column vector from $\{0,1\}^n$.

• Check if ABv = Cv.

• If
$$ABv = Cv$$
, then output $AB = C$

- If $ABv \neq Cv$, then output $AB \neq C$.
- Since $AB \neq C$, there exist (i, j) such that $c_{i,j}^* \neq 0$.

•
$$u_i = c_{i,1}^* v_1 + c_{i,2}^* v_2 + \dots + c_{i,j}^* v_j + \dots + c_{i,n}^* v_n = (\dots) + c_{i,j}^* v_j$$

- Once we reveal the random numbers $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$, this term is **fixed**.
- After fixing this term, there is **exactly one choice** of v_i that makes $u_i = 0$.

Pr[Freivalds' algorithm is successful] ≥ $\frac{1}{2}$

 \triangleright **Pr**[$u_i \neq 0$] $\geq \frac{1}{2}$

Technique: Principle of deferred decision

In the analysis of Freivalds' algorithm, we fix the variables $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$ and only consider the randomness in v_j .

• Why are we allowed to do this?

Technique: Principle of deferred decision

In the analysis of Freivalds' algorithm, we fix the variables $\{v_1, v_2, ..., v_n\} \setminus \{v_j\}$ and only consider the randomness in v_j .

• Why are we allowed to do this?

Principle of deferred decision:

• If we can show that $\Pr[\mathcal{E} \mid X = x] \ge p$ for every x, then $\Pr[\mathcal{E}] \ge p$.

 $\mathbf{Pr}[\mathcal{E}] = \sum_{x} \mathbf{Pr}[\mathcal{E} \mid X = x] \cdot \mathbf{Pr}[X = x] \ge p \cdot \sum_{x} \mathbf{Pr}[X = x] = p.$

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of **at most** $\frac{1}{2}$.

Case (AB = C):

• The algorithm answers AB = C correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least 1/2.
- The algorithm answers AB = C with a probability of at most 1/2.

successful with a probability of at least $\frac{1}{2}$.

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of **at most** $\frac{1}{2}$.

Case (AB = C):

• The algorithm answers AB = C correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least 1/2.
- The algorithm answers AB = C with a probability of at most 1/2.

Claim: The error probability can be reduced to **at most** f by repeating the algorithm for $t = \left[\log \frac{1}{f}\right]$ times.

- If all t outputs are AB = C, return AB = C.
- Otherwise, return $AB \neq C$.

Technique: Success probability amplification

We only show that Freivalds' algorithm is **incorrect** with a probability of **at most** $\frac{1}{2}$.

Case (AB = C):

• The algorithm answers AB = C correctly.

Case $(AB \neq C)$:

- The algorithm answers $AB \neq C$ with a probability of at least 1/2.
- The algorithm answers AB = C with a probability of at most 1/2.

Claim: The error probability can be reduced to **at most** f by repeating the algorithm for $t = \left[\log \frac{1}{f}\right]$ times.

- If all t outputs are AB = C, return AB = C.
- Otherwise, return $AB \neq C$.

- If AB = C, Freivalds' algorithm always answers AB = C correctly.
- If $AB \neq C$, the probability that Freivalds' algorithm answers AB = C for all $t = \left[\log \frac{1}{f}\right]$ iterations is at most $\frac{1}{2^t} \leq f$.

Question 1 @ VisuAlgo online quiz

Who is the **Master of Algorithms** pictured below?

- László Babai
- Rūsiņš Freivalds
- Leonid Levin
- Volker Strassen

- There are *n* different types of coupons.
- Once you obtain all *n* types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all *n* types of coupons?

- There are *n* different types of coupons.
- Once you obtain all *n* types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons?

Balls and bins:

m

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?

- There are *n* different types of coupons.
- Once you obtain all *n* types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all *n* types of coupons?

Balls and bins:

m

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?
- m balls $\leftrightarrow m$ cereal boxes.
- $n \text{ bins} \leftrightarrow n \text{ coupons.}$
- Every bin contains at least one ball \leftrightarrow All *n* types of coupons have been collected.

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?

Useful inequality: $1 + x \le e^x$

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?
- Consider one bin.
 The probability that the bin contains zero balls is \$\left(1-\frac{1}{n}\right)^m \left< e^{-\frac{m}{n}}\$.

Union bound: The probability that **at least one** bin contains zero balls is **at most** $n\left(1-\frac{1}{n}\right)^m \le ne^{-\frac{m}{n}}$.

- Throw *m* balls into *n* bins randomly and independently.
- What is the probability that every bin contains at least one ball?

The probability is at most 1/n if $m \ge 2n[\ln n]$.

- There are *n* different types of coupons.
- Once you obtain all *n* types of coupons, you may receive a prize.
- Each box of cereals contains a random coupon.
- How many boxes must you buy to collect all n types of coupons?

Answer: Buying $m = 2n[\ln n] \in \Theta(n \log n)$ boxes guarantees a success probability of at least $1 - \frac{1}{n}$.

- m balls $\leftrightarrow m$ cereal boxes.
- $n \text{ bins} \leftrightarrow n \text{ coupons.}$
- Every bin contains at least one ball \leftrightarrow All *n* types of coupons have been collected.

Technique: Union bound

- You want to upper bound the probability that a bad event \mathcal{E} occurs.
- You know that $\mathcal{E} = \mathcal{E}_1 \vee \mathcal{E}_2 \vee \cdots \vee \mathcal{E}_n$.
- Union bound:
 - $\Pr[\mathcal{E}] = \Pr[\mathcal{E}_1 \lor \mathcal{E}_2 \lor \cdots \lor \mathcal{E}_n] \le \Pr[\mathcal{E}_1] + \Pr[\mathcal{E}_2] + \cdots + \Pr[\mathcal{E}_n].$
- To make sure that $\Pr[\mathcal{E}] \leq f$, it suffices that $\Pr[\mathcal{E}_i] \leq \frac{f}{n}$ for each $i \in [n]$.

Expected value

• Expected value:

• $\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x]$, where the sum ranges over all possible outcomes x of the random variable X.

Technique: Markov inequality

- Markov inequality:
 - If X is a non-negative random variable and a > 0, then

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.$$

Technique: Markov inequality

• Markov inequality:

• If X is a non-negative random variable and a > 0, then

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.$$

• Proof:

$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x] \ge \sum_{x \ge a \cdot \mathbb{E}[X]} x \cdot \Pr[X = x]$$

$$\ge \sum_{x \ge a \cdot \mathbb{E}[X]} a \cdot \mathbb{E}[X] \cdot \Pr[X = x]$$

$$= a \cdot \mathbb{E}[X] \cdot \sum_{x \ge a \cdot \mathbb{E}[X]} \Pr[X = x]$$

$$= a \cdot \mathbb{E}[X] \cdot \Pr[X \ge a \cdot \mathbb{E}[X]] \qquad \triangleright \qquad \Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$$

Technique: Markov inequality

• Markov inequality:

• If X is a non-negative random variable and a > 0, then

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.$$

• Application:

The expected runtime of $\mathcal A$ is at most t

 \bigtriangledown

The runtime of $\mathcal A$ is at most $100 \cdot t$ with probability at least 0.99

 $\Pr[\text{runtime} \ge 100 \cdot t] \le \Pr[\text{runtime} \ge 100 \cdot \text{expected runtime}] \le \frac{1}{100}$

Technique: Markov inequality

- Markov inequality:
 - If X is a non-negative random variable and a > 0, then

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}.$$

• Application:

The time complexity of \mathcal{A} is $O(n \log n)$ with probability at least 0.99

Technique: Linearity of expectation

- Linearity of expectation:
 - If X = A + B, then $\mathbb{E}[X] = \mathbb{E}[A] + \mathbb{E}[B]$.
 - More generally, if $X = \sum_{i=1}^{n} X_i$, then $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$.

Technique: Linearity of expectation

• Linearity of expectation:

- If X = A + B, then $\mathbb{E}[X] = \mathbb{E}[A] + \mathbb{E}[B]$.
- More generally, if $X = \sum_{i=1}^{n} X_i$, then $\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i]$.

• **Proof:**
$$\mathbb{E}[X] = \sum_{x} x \cdot \Pr[X = x] = \sum_{x} x \cdot \Pr[A + B = x]$$
$$= \sum_{x} \sum_{b} x \cdot \Pr[(A = x - b) \land (B = b)] \qquad \Pr[A + B = x] = \sum_{b} \Pr[(A = x - b) \land (B = b)]$$
$$= \sum_{a} \sum_{b} (a + b) \cdot \Pr[(A = a) \land (B = b)] \qquad a = x - b$$
$$= \sum_{a} \sum_{b} a \cdot \Pr[(A = a) \land (B = b)] + \sum_{b} \sum_{a} b \cdot \Pr[(A = a) \land (B = b)]$$
$$= \sum_{a} a \cdot \sum_{b} \Pr[(A = a) \land (B = b)] + \sum_{b} b \cdot \sum_{a} \Pr[(A = a) \land (B = b)]$$
$$= \sum_{a} a \cdot \Pr[A = a] + \sum_{b} b \cdot \Pr[B = b]$$
$$= \mathbb{E}[A] + \mathbb{E}[B]$$

Technique: Indicator random variables

- Let \mathcal{E} be an event.
- The indicator random variable $\mathbf{1}_{\mathcal{E}}$ for \mathcal{E} is defined as

$$\mathbf{1}_{\mathcal{E}} = \begin{cases} 1, & \text{if } \mathcal{E} \text{ occurs,} \\ 0, & \text{otherwise.} \end{cases}$$

• Observation: $\mathbb{E}[\mathbf{1}_{\mathcal{E}}] = \Pr[\mathcal{E}].$

Hashing

- Hash table:
 - A is an array of length n.

• Hash function:

- *h* is a mapping from some universe *U* to the indices of the array {1,2, ..., *n*}.
- Insert(v): If v is not in A[h(v)], store v in A[h(v)].
- Search(v): Check if v is in A[h(v)].
- Delete(v): If v is in A[h(v)], remove v from A[h(v)].

Chain hashing

- A linked list is created if a position contains more than one element.
- The cost of an operation is linear in the size of the linked list.

• Hash table:

• A is an array of length n.

• Hash function:

- *h* is a mapping from some universe *U* to the indices of the array {1,2, ..., *n*}.
- Insert(v): If v is not in A[h(v)], store v in A[h(v)].
- Search(v): Check if v is in A[h(v)].
- Delete(v): If v is in A[h(v)], remove v from A[h(v)].

Balls and bins

• Throw *m* balls into *n* bins randomly and independently.

with a waifarmel		hach	function h	
with a uniforml	y random	nasn	runction <i>n</i>	

		Balls	Bins	
>	Hashing	Elements to be stored	Hash table	
	Coupon collector	Cereal boxes	Coupons	

Balls and bins

• Throw *m* balls into *n* bins randomly and independently.

Question 2 @ VisuAlgo online quiz

- Consider one bin.
- What is the **expected** number of balls in the bin?

•
$$\frac{m}{n}$$

• $1 + \frac{m}{n}$

- $1 + \frac{m}{n} \frac{1}{n}$
- $\max\left\{1, \frac{m}{n}\right\}$

Balls and bins:

• Throw *m* balls into *n* bins randomly and independently.

Question 3 @ VisuAlgo online quiz

- Consider one ball.
- What is the **expected** number of balls in the bin that contains the selected ball?
 - $\frac{m}{n}$ • $1 + \frac{m}{n}$
 - $1 + \frac{m}{n} \frac{1}{n}$
 - $\max\left\{1, \frac{m}{n}\right\}$

Balls and bins:

• Throw *m* balls into *n* bins randomly and independently.

Quick sort

• Input: an array A[1, n] of n numbers. \leftarrow Assume that all numbers are distinct.

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

• Recursion:

• Recursively sort A_S and A_L .

Randomized quick sort

• Input: an array A[1, n] of n numbers. Assume that all numbers are distinct.

uniformly at random

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition:

• Recursion:

• Recursively sort A_S and A_L .

Randomized quick sort

• Input: an array A[1, n] of n numbers. \leftarrow Assume that all numbers are distinct.

 A_{S}

 $\forall x \in A_s, x \leq \text{pivot}$

... pivot

 A_L

 $\forall x \in A_L, x \ge \text{pivot}$

uniformly at random

• Partition:

- Select a number in A[1..n] as the **pivot**.
- Rearrange the array to satisfy the condition: $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

This step requires comparing the **pivot** with all other numbers.

• Recursion:

• Recursively sort A_S and A_L .

Observation: running time of quick sort $\in \Theta$ (number of comparisons)

- $(a_1, a_2, ..., a_n)$ = the numbers of A in the sorted order.
- $X_{i,j}$ = the number of comparisons made between a_i and a_j .

Just need to know how to calculate this.

Observation:

- The number $X_{i,j}$ of comparisons made between a_i and a_j is either 0 or 1.
- We write $\mathcal{E}_{i,j}$ to denote the event $X_{i,j} = 1$.
 - $\Pr[\mathcal{E}_{i,j}] = \mathbb{E}[X_{i,j}] \iff X_{i,j}$ is the indicator random variable for $\mathcal{E}_{i,j}$.

Observation:

- The number $X_{i,j}$ of comparisons made between a_i and a_j is either 0 or 1.
- We write $\mathcal{E}_{i,j}$ to denote the event $X_{i,j} = 1$.
 - $\Pr[\mathcal{E}_{i,j}] = \mathbb{E}[X_{i,j}] \iff X_{i,j}$ is the indicator random variable for $\mathcal{E}_{i,j}$.

• Claim: For any
$$1 \le i < j \le n$$
, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

• **Claim:** For any
$$1 \le i < j \le n$$
, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

The first number chosen
as a pivot in
$$(a_i, ..., a_j)$$
:

• **Claim:** For any
$$1 \le i < j \le n$$
, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

• **Claim:** For any
$$1 \le i < j \le n$$
, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.
A comparison is made between a_i and a_j .

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

• **Claim:** For any
$$1 \le i < j \le n$$
, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

• **Claim:** For any $1 \le i < j \le n$, $\Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$.

Before a number in $(a_i, ..., a_j)$ is selected as a pivot, the numbers in $(a_i, ..., a_j)$ must belong to the same array.

$$\mathbb{E}[X_{i,j}] = \Pr[\mathcal{E}_{i,j}] = \frac{2}{j-i+1}$$

$$\mathbb{E}[\text{number of comparisons}] = \sum_{1 \le i < j \le n} \mathbb{E}[X_{i,j}] \stackrel{\downarrow}{=} \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

$$= 2\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{1}{j-i+1}$$

$$= 2\sum_{i=1}^{n} \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+1}\right) \in O(n \log n)$$

$$O(\log n)$$

Theorem: The expected running time of randomized quick sort is $O(n \log n)$.

Markov inequality

Randomized quick sort finishes in $O(n \log n)$ time with probability at least 0.99.

Two types of randomized algorithms

- Las Vegas algorithms:
 - The output is **always correct**.
 - The time complexity guarantee is only in expectation.
- Monte Carlo algorithms:
 - The output is correct only **with some probability**.
 - The time complexity guarantee holds with probability 1.

Which one is stronger?

Randomized quick sort

Freivalds' algorithm

Two types of randomized algorithms

- Las Vegas algorithms:
 - The output is **always correct**.
 - The time complexity guarantee is only in expectation.
- Monte Carlo algorithms:
 - The output is correct only **with some probability**.
 - The time complexity guarantee holds with probability 1.

Which one is stronger?

We can always turn a Las Vegas algorithm into a Monte Carlo algorithm via Markov inequality.

Freivalds' algorithm

Randomized quick sort

Discussions

Average-case running time of a deterministic version of an algorithm

They can be very different (in general).

Expected running time of a randomized version of an algorithm

Discussions

Average-case running time of a deterministic version of an algorithm

They can be very different (in general).

Expected running time of a randomized version of an algorithm

Can we apply the analysis of randomized quick sort to do the average-case analysis of deterministic quick sort, and vice versa?

Average-case number of comparisons for deterministic quick sort

Are they the same (not just asymptotically)?

Expected number of comparisons for randomized quick sort

Acknowledgement

• The slides are modified from previous editions of this course and similar course elsewhere.

• List of credits:

- Surender Baswana
- Arnab Bhattacharya
- Diptarka Chakraborty
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Wee Sun Lee
- Charles Leiserson
- Hon Wai Leong
- Wing-Kin Sung