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Randomized algorithms

OutputAlgorithm always correct

OutputAlgorithm
correct with 
probability 

Goal: Utilize randomization to develop algorithms that are more efficient or simpler
than their deterministic counterparts, at the cost of allowing a small error probability.

Input AlgorithmDeterministic:

Input

AlgorithmRandomized:
Randomness



Randomized algorithms

Input OutputAlgorithmDeterministic: always correct

Input

OutputAlgorithmRandomized:
Randomness

correct with 
probability 

This holds for every input.

• Still do a worst-case analysis over all possible inputs.
• Randomized complexity average-case complexity.

Here algorithm can perform badly for some inputs.
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• Given three matrices , , and , check if .

• A naïve algorithm: 
• Calculate using a matrix multiplication algorithm.

• The time



Verification of matrix multiplication

• Given three matrices , , and , check if .

• A naïve algorithm: 
• Calculate using a matrix multiplication algorithm.

• The time complexity of matrix multiplication:
• Basic algorithm: ଷ .
• Strassen’s algorithm: ଶ.଼… .

Question: Can we do better?
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Analysis of Freivalds’ algorithm

• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,
∗

,ଵ
∗

,
∗

•

ଵ

ଶ



∗



Analysis of Freivalds’ algorithm

• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,
∗

,ଵ
∗

,
∗

•

ଵ

ଶ



∗

The algorithm outputs 
an incorrect answer

if and only if 𝐴𝐵𝑣 = 𝐶𝑣 if and only if 𝑢 = 0 for all 𝑘 ∈ 𝑛



Freivalds’ algorithm is successful   for some 

Analysis of Freivalds’ algorithm

• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,
∗

,ଵ
∗

,
∗

•

ଵ

ଶ



∗

The algorithm outputs 
an incorrect answer

if and only if 𝐴𝐵𝑣 = 𝐶𝑣 if and only if 𝑢 = 0 for all 𝑘 ∈ 𝑛



Analysis of Freivalds’ algorithm

• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,
∗

,ଵ
∗

,
∗

•

ଵ

ଶ



∗

Freivalds’ algorithm is successful   for some 

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐,
∗ ≠ 0.

• 𝑢 = 𝑐,ଵ
∗ 𝑣ଵ + 𝑐,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐,
∗ 𝑣 + ⋯ + 𝑐,

∗ 𝑣 = … + 𝑐,
∗ 𝑣



Analysis of Freivalds’ algorithm

• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,
∗

,ଵ
∗

,
∗

•

ଵ

ଶ



∗

Freivalds’ algorithm is successful   for some 

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐,
∗ ≠ 0.

• 𝑢 = 𝑐,ଵ
∗ 𝑣ଵ + 𝑐,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐,
∗ 𝑣 + ⋯ + 𝑐,

∗ 𝑣 = … + 𝑐,
∗ 𝑣

• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣 ∖ 𝑣 , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣 that makes 𝑢 = 0.
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• Choose 

ଵ

ଶ



to be a uniformly 

random column vector from .
• Check if .
• , output .
• , output .

Freivalds’ algorithm is successful   for some 

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐,
∗ ≠ 0.

• 𝑢 = 𝑐,ଵ
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∗ 𝑣ଶ + ⋯ + 𝑐,
∗ 𝑣 + ⋯ + 𝑐,

∗ 𝑣 = … + 𝑐,
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• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣 ∖ 𝑣 , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣 that makes 𝑢 = 0. 𝐏𝐫 𝑢 ≠ 0 ≥

1
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At least one of them makes makes 𝑢 ≠ 0:
• 𝑣 = 0 with probability ଵ

ଶ
.

• 𝑣 = 1 with probability ଵ
ଶ
.
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• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣 ∖ 𝑣 , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣 that makes 𝑢 = 0.

𝐏𝐫 Freivalds’ algorithm is successful ≥
1

2

𝐏𝐫 𝑢 ≠ 0 ≥
1

2
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In the analysis of Freivalds’ algorithm, we fix the variables ଵ ଶ   and 
only consider the randomness in .
• Why are we allowed to do this?



Technique: Principle of deferred decision

In the analysis of Freivalds’ algorithm, we fix the variables ଵ ଶ   and 
only consider the randomness in .
• Why are we allowed to do this?

Principle of deferred decision: 
• If we can show that for every , then .

௫ ௫ .



Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most 𝟏
𝟐
.

Case 𝐴𝐵 = 𝐶 :
• The algorithm answers 𝐴𝐵 = 𝐶 correctly.

Case 𝐴𝐵 ≠ 𝐶 :
• The algorithm answers 𝐴𝐵 ≠ 𝐶 with a probability of at least 1/2.
• The algorithm answers 𝐴𝐵 = 𝐶 with a probability of at most 1/2.

successful with a probability of at least 𝟏
𝟐
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Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most 𝟏
𝟐
.

Case 𝐴𝐵 = 𝐶 :
• The algorithm answers 𝐴𝐵 = 𝐶 correctly.

Case 𝐴𝐵 ≠ 𝐶 :
• The algorithm answers 𝐴𝐵 ≠ 𝐶 with a probability of at least 1/2.
• The algorithm answers 𝐴𝐵 = 𝐶 with a probability of at most 1/2.

Claim: The error probability can be reduced to at most by 
repeating the algorithm for ଵ


times.

• If all outputs are , return .
• Otherwise, return . 

• If 𝐴𝐵 = 𝐶, Freivalds’ algorithm always 
answers 𝐴𝐵 = 𝐶 correctly.

• If 𝐴𝐵 ≠ 𝐶, the probability that Freivalds’ 
algorithm answers 𝐴𝐵 = 𝐶 for all 𝑡 =

log
ଵ


iterations is at most ଵ

ଶ ≤ 𝑓. 



Who is the Master of Algorithms pictured below?

• László Babai

• Rūsiņš Freivalds

• Leonid Levin

• Volker Strassen

Question 1 @ VisuAlgo online quiz
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• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?
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Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• 𝑚 balls 𝑚 cereal boxes.
• 𝑛 bins 𝑛 coupons.
• Every bin contains at least one ball All 𝑛 types of coupons have been collected.

𝑚



Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

Chernoff bound:

• ି
ഃమഋ

మ ,     for .

• Consider one bin.
• Let be the number of balls in this bin.
• The expected value of is 


.

• Chernoff bound: With , the 

probability that is at most ି


మ.

• Union bound: All bins have at least one 

ball with probability at least ି


మ. 
Can make the probability at least 

with .



Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• Consider one bin.

• The probability that the bin contains zero balls is 1 −
ଵ




≤ 𝑒ି



 .

Useful inequality: 1 + 𝑥 ≤ 𝑒௫
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Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• Consider one bin.

• The probability that the bin contains zero balls is 1 −
ଵ




≤ 𝑒ି



 .

Union bound: The probability that at least one bin contains zero balls is at most 𝑛 1 −
ଵ




≤ 𝑛𝑒ି



 .

The probability is at most 1/𝑛 if 𝑚 ≥ 2𝑛 ln 𝑛 .



Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Answer: Buying boxes guarantees a success probability of at least ଵ


.

• 𝑚 balls 𝑚 cereal boxes.
• 𝑛 bins 𝑛 coupons.
• Every bin contains at least one ball All 𝑛 types of coupons have been collected.



Technique: Union bound

• You want to upper bound the probability that a bad event occurs.

• You know that ଵ ଶ .

• Union bound: 
• ଵ ଶ  ଵ ଶ  .

• To make sure that , it suffices that 



for each . 



Expected value

• Expected value:
• ௫ , where the sum ranges over 

all possible outcomes of the random variable .
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Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then 

ଵ


.

• Application:

The expected runtime of is at most

The runtime of is at most with probability at least 

Pr runtime ≥ 100 ⋅ 𝑡 ≤ Pr runtime ≥ 100 ⋅ expected runtime ≤  
ଵ

ଵ



Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then 

ଵ


.

• Application:

The expected time complexity of is 

The time complexity of is with probability at least 



Technique: Linearity of expectation

• Linearity of expectation:
• If , then .
• More generally, if 
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Technique: Linearity of expectation

• Linearity of expectation:
• If , then .
• More generally, if 


ୀଵ , then 


ୀଵ .

• Proof: 𝔼 𝑋 =  𝑥 ⋅ Pr 𝑋 = 𝑥

௫

=  𝑥 ⋅ Pr 𝐴 + 𝐵 = 𝑥

௫

=   𝑥 ⋅ Pr (𝐴 = 𝑥 − 𝑏) ∧ (𝐵 = 𝑏)

௫

=  (𝑎 + 𝑏) ⋅ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)
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+   𝑏 ⋅ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)



=  𝑎 ⋅  Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)



+  𝑏 ⋅  Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)



=  𝑎 ⋅ Pr 𝐴 = 𝑎



+  𝑏 ⋅ Pr 𝐵 = 𝑏



= 𝔼 𝐴 + 𝔼 𝐵

𝑎 = 𝑥 − 𝑏

Pr 𝐴 + 𝐵 = 𝑥 =  Pr (𝐴 = 𝑥 − 𝑏) ∧ (𝐵 = 𝑏)





Technique: Indicator random variables

• Let be an event.
• The indicator random variable for is defined as

• Observation: .



Hashing

• Hash table: 
• is an array of length .

• Hash function:
• is a mapping from some universe to the indices of the array .

• Insert( ): If is not in , store in .

• Search( ): Check if is in .

• Delete( ): If is in , remove from .



Chain hashing

• Hash table: 
• is an array of length .

• Hash function:
• is a mapping from some universe to the indices of the array .

• Insert( ): If is not in , store in .

• Search( ): Check if is in .

• Delete( ): If is in , remove from .

1

2

3

4

5

6

7

8

21

10 24 17

12

36

91

• A linked list is created if a position contains more than one element.
• The cost of an operation is linear in the size of the linked list. 
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• Throw balls into bins randomly and independently.
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with a uniformly random hash function ℎ



Balls and bins

• Throw balls into bins randomly and independently.

BinsBalls

Hash tableElements to be storedHashing

CouponsCereal boxesCoupon collector

with a uniformly random hash function ℎ

Number of balls in a bin Size of the linked list in an array slot Cost of an operation

How to analyze this?



Question 2 @ VisuAlgo online quiz

• Consider one bin.
• What is the expected number of balls in the bin? 

•




•




•




ଵ



•




Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.



Question 3 @ VisuAlgo online quiz

• Consider one ball.
• What is the expected number of balls in the bin that contains the selected ball? 

•




•




•




ଵ



•




Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.



Quick sort

• Input: an array of numbers.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and .

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

ௌ

∀𝑥 ∈ 𝐴, 𝑥 ≥ pivot

Assume that all numbers are distinct.
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Randomized quick sort

• Input: an array of numbers.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and .

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

ௌ

∀𝑥 ∈ 𝐴, 𝑥 ≥ pivot

uniformly at random

Assume that all numbers are distinct.

Observation: running time of quick sort number of comparisons

This step requires comparing the pivot with all other numbers.



Analysis of randomized quick sort

• the numbers of in the sorted order.
• the number of comparisons made between and .

number of comparisons ,

ଵஸழஸ

Linearity of expectation

Just need to know how to calculate this.
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Analysis of randomized quick sort

• Claim: For any , ,
ଶ

ିାଵ
.

A comparison is made between 𝑎 and 𝑎.
if and only if

Before a number in 𝑎, … , 𝑎 is selected as a pivot, the numbers in 𝑎, … , 𝑎 must belong to the same array.

A comparison is made between 𝑎 and 𝑎.

Each number in 𝑎, … , 𝑎 is equally likely to 
be the first one chosen as a pivot in 𝑎, … , 𝑎 .

The first number chosen as a 
pivot in 𝑎, … , 𝑎 is 𝑎 or 𝑎.



Analysis of randomized quick sort

number of comparisons ,

ଵஸழஸ ଵஸழஸ



ୀାଵ



ୀଵ


ୀଵ

𝔼 𝑋, = Pr ℰ, =
2

𝑗 − 𝑖 + 1

𝑂 log 𝑛



Analysis of randomized quick sort

Theorem: The expected running time of randomized quick sort is 

Randomized quick sort finishes in time with probability at least .

Markov inequality



Two types of randomized algorithms

• Las Vegas algorithms:
• The output is always correct.
• The time complexity guarantee is only in expectation.

• Monte Carlo algorithms:
• The output is correct only with some probability.
• The time complexity guarantee holds with probability .

Randomized quick sort

Freivalds’ algorithm

Which one is stronger?



Two types of randomized algorithms

• Las Vegas algorithms:
• The output is always correct.
• The time complexity guarantee is only in expectation.

• Monte Carlo algorithms:
• The output is correct only with some probability.
• The time complexity guarantee holds with probability .

Randomized quick sort

Freivalds’ algorithm

We can always turn a Las Vegas algorithm into a Monte Carlo algorithm via Markov inequality.

Which one is stronger?



Discussions Average-case running time of a deterministic version of an algorithm

Expected running time of a randomized version of an algorithm

They can be very different (in general).



Discussions

Can we apply the analysis of randomized quick sort to do the 
average-case analysis of deterministic quick sort, and vice versa?

Average-case running time of a deterministic version of an algorithm

Expected running time of a randomized version of an algorithm

They can be very different (in general).

Average-case number of comparisons for deterministic quick sort

Expected number of comparisons for randomized quick sort

Are they the same (not just asymptotically)?
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