
CS3230 – Design and Analysis of Algorithms
(S1 AY2024/25)

Lecture 5: Randomized Algorithms

Randomized algorithms

OutputAlgorithm always correct

OutputAlgorithm
correct with
probability

Input AlgorithmDeterministic:

Input

AlgorithmRandomized:
Randomness

Randomized algorithms

OutputAlgorithm always correct

OutputAlgorithm
correct with
probability

Goal: Utilize randomization to develop algorithms that are more efficient or simpler
than their deterministic counterparts, at the cost of allowing a small error probability.

Input AlgorithmDeterministic:

Input

AlgorithmRandomized:
Randomness

Randomized algorithms

Input OutputAlgorithmDeterministic: always correct

Input

OutputAlgorithmRandomized:
Randomness

correct with
probability

This holds for every input.

• Still do a worst-case analysis over all possible inputs.
• Randomized complexity average-case complexity.

Here algorithm can perform badly for some inputs.

Verification of matrix multiplication

• Given three matrices , , and , check if .

• A naïve algorithm:
• Calculate using a matrix multiplication algorithm.

• The time

Verification of matrix multiplication

• Given three matrices , , and , check if .

• A naïve algorithm:
• Calculate using a matrix multiplication algorithm.

• The time complexity of matrix multiplication:
• Basic algorithm: ଷ .
• Strassen’s algorithm: ଶ.଼଴଻… .

Question: Can we do better?

Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

For each 𝑖 ∈ 𝑛 independently:
• 𝑣௜ = 0 with probability ଵ

ଶ
.

• 𝑣௜ = 1 with probability ଵ
ଶ
.

Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

For each 𝑖 ∈ 𝑛 independently:
• 𝑣௜ = 0 with probability ଵ

ଶ
.

• 𝑣௜ = 1 with probability ଵ
ଶ
.

This can be done in 𝑂(𝑛ଶ) time via
three matrix-vector multiplication.

Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

For each 𝑖 ∈ 𝑛 independently:
• 𝑣௜ = 0 with probability ଵ

ଶ
.

• 𝑣௜ = 1 with probability ଵ
ଶ
.

This can be done in 𝑂(𝑛ଶ) time via
three matrix-vector multiplication.

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• If , then , so the algorithm always
decides correctly.

• From now on, we focus on the case where .

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,௡
∗

௡,ଵ
∗

௡,௡
∗

•

ଵ

ଶ

௡

∗

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,௡
∗

௡,ଵ
∗

௡,௡
∗

•

ଵ

ଶ

௡

∗

The algorithm outputs
an incorrect answer

if and only if 𝐴𝐵𝑣 = 𝐶𝑣 if and only if 𝑢௞ = 0 for all 𝑘 ∈ 𝑛

Freivalds’ algorithm is successful ௞ for some

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,௡
∗

௡,ଵ
∗

௡,௡
∗

•

ଵ

ଶ

௡

∗

The algorithm outputs
an incorrect answer

if and only if 𝐴𝐵𝑣 = 𝐶𝑣 if and only if 𝑢௞ = 0 for all 𝑘 ∈ 𝑛

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,௡
∗

௡,ଵ
∗

௡,௡
∗

•

ଵ

ଶ

௡

∗

Freivalds’ algorithm is successful ௞ for some

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐௜,௝
∗ ≠ 0.

• 𝑢௜ = 𝑐௜,ଵ
∗ 𝑣ଵ + 𝑐௜,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐௜,௝
∗ 𝑣௝ + ⋯ + 𝑐௜,௡

∗ 𝑣௡ = … + 𝑐௜,௝
∗ 𝑣௝

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

• From now on, we focus on the case where .

• ∗
ଵ,ଵ
∗

ଵ,௡
∗

௡,ଵ
∗

௡,௡
∗

•

ଵ

ଶ

௡

∗

Freivalds’ algorithm is successful ௞ for some

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐௜,௝
∗ ≠ 0.

• 𝑢௜ = 𝑐௜,ଵ
∗ 𝑣ଵ + 𝑐௜,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐௜,௝
∗ 𝑣௝ + ⋯ + 𝑐௜,௡

∗ 𝑣௡ = … + 𝑐௜,௝
∗ 𝑣௝

• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣௡ ∖ 𝑣௝ , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣௝ that makes 𝑢௜ = 0.

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

Freivalds’ algorithm is successful ௞ for some

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐௜,௝
∗ ≠ 0.

• 𝑢௜ = 𝑐௜,ଵ
∗ 𝑣ଵ + 𝑐௜,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐௜,௝
∗ 𝑣௝ + ⋯ + 𝑐௜,௡

∗ 𝑣௡ = … + 𝑐௜,௝
∗ 𝑣௝

• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣௡ ∖ 𝑣௝ , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣௝ that makes 𝑢௜ = 0. 𝐏𝐫 𝑢௜ ≠ 0 ≥

1

2

At least one of them makes makes 𝑢௜ ≠ 0:
• 𝑣௝ = 0 with probability ଵ

ଶ
.

• 𝑣௝ = 1 with probability ଵ
ଶ
.

Analysis of Freivalds’ algorithm

• Choose

ଵ

ଶ

௡

to be a uniformly

random column vector from ௡.
• Check if .
• , output .
• , output .

Freivalds’ algorithm is successful ௞ for some

• Since 𝐴𝐵 ≠ 𝐶, there exist (𝑖, 𝑗) such that 𝑐௜,௝
∗ ≠ 0.

• 𝑢௜ = 𝑐௜,ଵ
∗ 𝑣ଵ + 𝑐௜,ଶ

∗ 𝑣ଶ + ⋯ + 𝑐௜,௝
∗ 𝑣௝ + ⋯ + 𝑐௜,௡

∗ 𝑣௡ = … + 𝑐௜,௝
∗ 𝑣௝

• Once we reveal the random numbers 𝑣ଵ, 𝑣ଶ, … , 𝑣௡ ∖ 𝑣௝ , this term is fixed.
• After fixing this term, there is exactly one choice of 𝑣௝ that makes 𝑢௜ = 0.

𝐏𝐫 Freivalds’ algorithm is successful ≥
1

2

𝐏𝐫 𝑢௜ ≠ 0 ≥
1

2

Technique: Principle of deferred decision

In the analysis of Freivalds’ algorithm, we fix the variables ଵ ଶ ௡ ௝ and
only consider the randomness in ௝.
• Why are we allowed to do this?

Technique: Principle of deferred decision

In the analysis of Freivalds’ algorithm, we fix the variables ଵ ଶ ௡ ௝ and
only consider the randomness in ௝.
• Why are we allowed to do this?

Principle of deferred decision:
• If we can show that for every , then .

௫ ௫ .

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most 𝟏
𝟐
.

Case 𝐴𝐵 = 𝐶 :
• The algorithm answers 𝐴𝐵 = 𝐶 correctly.

Case 𝐴𝐵 ≠ 𝐶 :
• The algorithm answers 𝐴𝐵 ≠ 𝐶 with a probability of at least 1/2.
• The algorithm answers 𝐴𝐵 = 𝐶 with a probability of at most 1/2.

successful with a probability of at least 𝟏
𝟐
.

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most 𝟏
𝟐
.

Case 𝐴𝐵 = 𝐶 :
• The algorithm answers 𝐴𝐵 = 𝐶 correctly.

Case 𝐴𝐵 ≠ 𝐶 :
• The algorithm answers 𝐴𝐵 ≠ 𝐶 with a probability of at least 1/2.
• The algorithm answers 𝐴𝐵 = 𝐶 with a probability of at most 1/2.

Claim: The error probability can be reduced to at most by
repeating the algorithm for ଵ

௙
times.

• If all outputs are , return .
• Otherwise, return .

Technique: Success probability amplification

We only show that Freivalds’ algorithm is incorrect with a probability of at most 𝟏
𝟐
.

Case 𝐴𝐵 = 𝐶 :
• The algorithm answers 𝐴𝐵 = 𝐶 correctly.

Case 𝐴𝐵 ≠ 𝐶 :
• The algorithm answers 𝐴𝐵 ≠ 𝐶 with a probability of at least 1/2.
• The algorithm answers 𝐴𝐵 = 𝐶 with a probability of at most 1/2.

Claim: The error probability can be reduced to at most by
repeating the algorithm for ଵ

௙
times.

• If all outputs are , return .
• Otherwise, return .

• If 𝐴𝐵 = 𝐶, Freivalds’ algorithm always
answers 𝐴𝐵 = 𝐶 correctly.

• If 𝐴𝐵 ≠ 𝐶, the probability that Freivalds’
algorithm answers 𝐴𝐵 = 𝐶 for all 𝑡 =

log
ଵ

௙
iterations is at most ଵ

ଶ೟ ≤ 𝑓.

Who is the Master of Algorithms pictured below?

• László Babai

• Rūsiņš Freivalds

• Leonid Levin

• Volker Strassen

Question 1 @ VisuAlgo online quiz

Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.
• What is the probability that every bin contains at least one ball?

𝑚

Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• 𝑚 balls 𝑚 cereal boxes.
• 𝑛 bins 𝑛 coupons.
• Every bin contains at least one ball All 𝑛 types of coupons have been collected.

𝑚

Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

Chernoff bound:

• ି
ഃమഋ

మ , for .

• Consider one bin.
• Let be the number of balls in this bin.
• The expected value of is ௠

௡
.

• Chernoff bound: With , the

probability that is at most ି
೘

మ೙.

• Union bound: All bins have at least one

ball with probability at least ି
೘

మ೙.
Can make the probability at least

with .

Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• Consider one bin.

• The probability that the bin contains zero balls is 1 −
ଵ

௡

௠
≤ 𝑒ି

೘

೙ .

Useful inequality: 1 + 𝑥 ≤ 𝑒௫

Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• Consider one bin.

• The probability that the bin contains zero balls is 1 −
ଵ

௡

௠
≤ 𝑒ି

೘

೙ .

Union bound: The probability that at least one bin contains zero balls is at most 𝑛 1 −
ଵ

௡

௠
≤ 𝑛𝑒ି

೘

೙ .

Balls and bins

• Throw balls into bins randomly and independently.
• What is the probability that every bin contains at least one ball?

• Consider one bin.

• The probability that the bin contains zero balls is 1 −
ଵ

௡

௠
≤ 𝑒ି

೘

೙ .

Union bound: The probability that at least one bin contains zero balls is at most 𝑛 1 −
ଵ

௡

௠
≤ 𝑛𝑒ି

೘

೙ .

The probability is at most 1/𝑛 if 𝑚 ≥ 2𝑛 ln 𝑛 .

Coupon collector’s problem

• There are different types of coupons.
• Once you obtain all types of coupons, you may receive a prize.
• Each box of cereals contains a random coupon.
• How many boxes must you buy to collect all types of coupons?

Answer: Buying boxes guarantees a success probability of at least ଵ

௡
.

• 𝑚 balls 𝑚 cereal boxes.
• 𝑛 bins 𝑛 coupons.
• Every bin contains at least one ball All 𝑛 types of coupons have been collected.

Technique: Union bound

• You want to upper bound the probability that a bad event occurs.

• You know that ଵ ଶ ௡.

• Union bound:
• ଵ ଶ ௡ ଵ ଶ ௡ .

• To make sure that , it suffices that ௜
௙

௡
for each .

Expected value

• Expected value:
• ௫ , where the sum ranges over

all possible outcomes of the random variable .

Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then

ଵ

௔
.

Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then

ଵ

௔
.

• Proof:

௫ஹ௔⋅𝔼 ௑

௫ஹ௔⋅𝔼 ௑

௫ஹ௔⋅𝔼 ௑

௫

Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then

ଵ

௔
.

• Application:

The expected runtime of is at most

The runtime of is at most with probability at least

Pr runtime ≥ 100 ⋅ 𝑡 ≤ Pr runtime ≥ 100 ⋅ expected runtime ≤
ଵ

ଵ଴଴

Technique: Markov inequality

• Markov inequality:
• If is a non-negative random variable and , then

ଵ

௔
.

• Application:

The expected time complexity of is

The time complexity of is with probability at least

Technique: Linearity of expectation

• Linearity of expectation:
• If , then .
• More generally, if ௜

௡
௜ୀଵ , then ௜

௡
௜ୀଵ .

Technique: Linearity of expectation

• Linearity of expectation:
• If , then .
• More generally, if ௜

௡
௜ୀଵ , then ௜

௡
௜ୀଵ .

• Proof: 𝔼 𝑋 = ෍ 𝑥 ⋅ Pr 𝑋 = 𝑥

௫

= ෍ 𝑥 ⋅ Pr 𝐴 + 𝐵 = 𝑥

௫

= ෍ ෍ 𝑥 ⋅ Pr (𝐴 = 𝑥 − 𝑏) ∧ (𝐵 = 𝑏)

௕௫

= ෍ ෍(𝑎 + 𝑏) ⋅ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)

௕௔

= ෍ ෍ 𝑎 ⋅ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)

௕௔

+ ෍ ෍ 𝑏 ⋅ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)

௔௕

= ෍ 𝑎 ⋅ ෍ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)

௕௔

+ ෍ 𝑏 ⋅ ෍ Pr (𝐴 = 𝑎) ∧ (𝐵 = 𝑏)

௔௕

= ෍ 𝑎 ⋅ Pr 𝐴 = 𝑎

௔

+ ෍ 𝑏 ⋅ Pr 𝐵 = 𝑏

௕

= 𝔼 𝐴 + 𝔼 𝐵

𝑎 = 𝑥 − 𝑏

Pr 𝐴 + 𝐵 = 𝑥 = ෍ Pr (𝐴 = 𝑥 − 𝑏) ∧ (𝐵 = 𝑏)

௕

Technique: Indicator random variables

• Let be an event.
• The indicator random variable for is defined as

• Observation: .

Hashing

• Hash table:
• is an array of length .

• Hash function:
• is a mapping from some universe to the indices of the array .

• Insert(): If is not in , store in .

• Search(): Check if is in .

• Delete(): If is in , remove from .

Chain hashing

• Hash table:
• is an array of length .

• Hash function:
• is a mapping from some universe to the indices of the array .

• Insert(): If is not in , store in .

• Search(): Check if is in .

• Delete(): If is in , remove from .

1

2

3

4

5

6

7

8

21

10 24 17

12

36

91

• A linked list is created if a position contains more than one element.
• The cost of an operation is linear in the size of the linked list.

Balls and bins

• Throw balls into bins randomly and independently.

BinsBalls

Hash tableElements to be storedHashing

CouponsCereal boxesCoupon collector

with a uniformly random hash function ℎ

Balls and bins

• Throw balls into bins randomly and independently.

BinsBalls

Hash tableElements to be storedHashing

CouponsCereal boxesCoupon collector

with a uniformly random hash function ℎ

Number of balls in a bin Size of the linked list in an array slot Cost of an operation

How to analyze this?

Question 2 @ VisuAlgo online quiz

• Consider one bin.
• What is the expected number of balls in the bin?

•
௠

௡

•
௠

௡

•
௠

௡

ଵ

௡

•
௠

௡

Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.

Question 3 @ VisuAlgo online quiz

• Consider one ball.
• What is the expected number of balls in the bin that contains the selected ball?

•
௠

௡

•
௠

௡

•
௠

௡

ଵ

௡

•
௠

௡

Balls and bins:
• Throw 𝑚 balls into 𝑛 bins randomly and independently.

Quick sort

• Input: an array of numbers.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and ௅.

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

௅ௌ

∀𝑥 ∈ 𝐴௅, 𝑥 ≥ pivot

Assume that all numbers are distinct.

Randomized quick sort

• Input: an array of numbers.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and ௅.

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

௅ௌ

∀𝑥 ∈ 𝐴௅, 𝑥 ≥ pivot

uniformly at random

Assume that all numbers are distinct.

Randomized quick sort

• Input: an array of numbers.

• Partition:
• Select a number in as the pivot.
• Rearrange the array to satisfy the condition:

• Recursion:
• Recursively sort ௌ and ௅.

∀𝑥 ∈ 𝐴ௌ, 𝑥 ≤ pivot

௅ௌ

∀𝑥 ∈ 𝐴௅, 𝑥 ≥ pivot

uniformly at random

Assume that all numbers are distinct.

Observation: running time of quick sort number of comparisons

This step requires comparing the pivot with all other numbers.

Analysis of randomized quick sort

• the numbers of in the sorted order.
• the number of comparisons made between and .

number of comparisons ௜,௝

ଵஸ௜ழ௝ஸ௡

Linearity of expectation

Just need to know how to calculate this.

Analysis of randomized quick sort

• Observation:
• The number ௜,௝ of comparisons made between ௜ and ௝ is either or .
• We write ௜,௝ to denote the event ௜,௝ .

• ௜,௝ ௜,௝ 𝑋௜,௝ is the indicator random variable for ℰ௜,௝.

Analysis of randomized quick sort

• Observation:
• The number ௜,௝ of comparisons made between ௜ and ௝ is either or .
• We write ௜,௝ to denote the event ௜,௝ .

• ௜,௝ ௜,௝ 𝑋௜,௝ is the indicator random variable for ℰ௜,௝.

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

A comparison is made between 𝑎௜ and 𝑎௝.

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

A comparison is made between 𝑎௜ and 𝑎௝.

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

𝑎௜ or 𝑎௝

not 𝑎௜ or 𝑎௝

A comparison is made between 𝑎௜ and 𝑎௝.

The first number chosen
as a pivot in 𝑎௜, … , 𝑎௝ :

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

𝑎௜ or 𝑎௝

not 𝑎௜ or 𝑎௝

The algorithm will compare the pivot with
all other numbers in the current array.

ℰ௜,௝ occurs.

A comparison is made between 𝑎௜ and 𝑎௝.

The first number chosen
as a pivot in 𝑎௜, … , 𝑎௝ :

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

The first number chosen
as a pivot in 𝑎௜, … , 𝑎௝ :

𝑎௜ or 𝑎௝

not 𝑎௜ or 𝑎௝

The algorithm will compare the pivot with
all other numbers in the current array.

𝑎௜ and 𝑎௝ will belong to different
arrays in the recursive calls.

ℰ௜,௝ occurs.

ℰ௜,௝ does not occur.

A comparison is made between 𝑎௜ and 𝑎௝.

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

A comparison is made between 𝑎௜ and 𝑎௝.
if and only if

The first number chosen as a
pivot in 𝑎௜, … , 𝑎௝ is 𝑎௜ or 𝑎௝.

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

𝑎௜ or 𝑎௝

not 𝑎௜ or 𝑎௝

The algorithm will compare the pivot with
all other numbers in the current array.

𝑎௜ and 𝑎௝ will belong to different
arrays in the recursive calls.

ℰ௜,௝ occurs.

ℰ௜,௝ does not occur.

A comparison is made between 𝑎௜ and 𝑎௝.

The first number chosen
as a pivot in 𝑎௜, … , 𝑎௝ :

Analysis of randomized quick sort

• Claim: For any , ௜,௝
ଶ

௝ି௜ାଵ
.

A comparison is made between 𝑎௜ and 𝑎௝.
if and only if

Before a number in 𝑎௜, … , 𝑎௝ is selected as a pivot, the numbers in 𝑎௜, … , 𝑎௝ must belong to the same array.

A comparison is made between 𝑎௜ and 𝑎௝.

Each number in 𝑎௜, … , 𝑎௝ is equally likely to
be the first one chosen as a pivot in 𝑎௜, … , 𝑎௝ .

The first number chosen as a
pivot in 𝑎௜, … , 𝑎௝ is 𝑎௜ or 𝑎௝.

Analysis of randomized quick sort

number of comparisons ௜,௝

ଵஸ௜ழ௝ஸ௡ ଵஸ௜ழ௝ஸ௡

௡

௝ୀ௜ାଵ

௡

௜ୀଵ
௡

௜ୀଵ

𝔼 𝑋௜,௝ = Pr ℰ௜,௝ =
2

𝑗 − 𝑖 + 1

𝑂 log 𝑛

Analysis of randomized quick sort

Theorem: The expected running time of randomized quick sort is

Randomized quick sort finishes in time with probability at least .

Markov inequality

Two types of randomized algorithms

• Las Vegas algorithms:
• The output is always correct.
• The time complexity guarantee is only in expectation.

• Monte Carlo algorithms:
• The output is correct only with some probability.
• The time complexity guarantee holds with probability .

Randomized quick sort

Freivalds’ algorithm

Which one is stronger?

Two types of randomized algorithms

• Las Vegas algorithms:
• The output is always correct.
• The time complexity guarantee is only in expectation.

• Monte Carlo algorithms:
• The output is correct only with some probability.
• The time complexity guarantee holds with probability .

Randomized quick sort

Freivalds’ algorithm

We can always turn a Las Vegas algorithm into a Monte Carlo algorithm via Markov inequality.

Which one is stronger?

Discussions Average-case running time of a deterministic version of an algorithm

Expected running time of a randomized version of an algorithm

They can be very different (in general).

Discussions

Can we apply the analysis of randomized quick sort to do the
average-case analysis of deterministic quick sort, and vice versa?

Average-case running time of a deterministic version of an algorithm

Expected running time of a randomized version of an algorithm

They can be very different (in general).

Average-case number of comparisons for deterministic quick sort

Expected number of comparisons for randomized quick sort

Are they the same (not just asymptotically)?

Acknowledgement

• The slides are modified from previous editions of this course and similar
course elsewhere.

• List of credits:
• Surender Baswana
• Arnab Bhattacharya
• Diptarka Chakraborty
• Yi-Jun Chang
• Erik Demaine
• Steven Halim
• Sanjay Jain
• Wee Sun Lee
• Charles Leiserson
• Hon Wai Leong
• Wing-Kin Sung

