
Amortized Analysis

S. Halim YJ. Chang

School of Computing
National University of Singapore

CS3230 Lec08; Tue, 08 Oct 2024



Overview

Introduction

Binary Counter
Aggregate Method
Accounting Method
Potential Method

Dynamic Table
Aggregate Method
Accounting Method
Potential Method

Wrapping-Up



Why do we need ‘amortized analysis’?

Suppose there is a sequence of n operations o1, o2, . . . , on.
Let f (n) be the worst-case time complexity of any operation.

Let t(i) be the time complexity of the i-th operation oi , and
Let T (n) be the time complexity of all n operations, i.e.,

T (n) =
∑n

i=1 t(i)

Without amortised analysis, if we only think worst-case each time,
we may analyse

T (n) = n · f (n)

This n · f (n) could be grossly wrong (i.e., too high/not tight).



Binary Counter

A classic motivating example for introducing amortized analysis.
Real-life application: Unix time.
PS: Yes, we will spend half-lecture talking about ++counter...

Open https://visualgo.net/en/bitmask and do these steps:

▶ Set S = 0 and click ‘Go’

▶ Click ‘Increment’ many times, e.g., after 11x, result = 1011

PS: The animation/pseudocode at VisuAlgo vs this lecture note
are not 100% identical as we use bit manipulation at VisuAlgo.

https://en.wikipedia.org/wiki/Unix_time
https://visualgo.net/en/bitmask


k-bit Binary Counter

INCREMENT(A) // A is a bitmask (array of bits)

i = 0 // we read A from right to left

while i < length(A) and A[i] = 1 do // slow loop?

A[i] = 0 // flip 1 to 0

i = i+1

if i < length(A) then

A[i] = 1 // flip 0 to 1

Objective of amortized analysis: count the total number of bit flips
(0 → 1 and 1 → 0) during the n increments.

Let T (n) be the total number of bit flips during the n increments.
Our aim is to get a tight bound on T (n).



Number of bit flips (Attempt 1)

A[j ]
i 3210 cost total

0 0000 0 0

1 0001 1 1

2 0010 2 3

3 0011 1 4

4 0100 3 7

5 0101 1 8

6 0110 2 10

7 0111 1 11

8 1000 4* 15

9 1001 1 16

10 1010 2 18

n=11 1011 1 19

Attempt 1: Let t(i) be the
number of bit flips of i -th op,
thus T (n) =

∑n
i=1 t(i)

In the worst case, t(i) = k
(all k bits are flipped),
(e.g., from i = 7 to 8*),
so we have
T (n) = n · k ∈ O(n · k)

But is this a tight bound?



Number of bit flips (Attempt 2)

A[j ]
i 3210 cost total

0 0000 0 0

1 0001 1 1

2 0010 2 3

3 0011 1 4

4 0100 3 7

5 0101 1 8

6 0110 2 10

7 0111 1 11

8 1000 4 15

9 1001 1 16

10 1010 2 18

n=11 1011 1 19

Attempt 2: Let f (j) be the
number of times the j-th bit
flips, thus T (n) =

∑k−1
j=0 f (j)

Let’s see the pattern:
f (0) = n = n

1 (black, j = 0)
f (1) = n

2 (blue, j = 1)
f (2) = n

4 (green, j = 2)
f (3) = n

8 (red, j = 3)
f (j) = n

2j

T (n) = n ·(11 +
1
2 +

1
4 + . . .+ 1

2k−1 )

T (n) < n · (11 + 1
2 + 1

4 + . . .)
T (n) < 2 · n (

∑
of ∞ geo series)

This is much better than O(n · k)
as k can be ≈ log n



Amortized Analysis

Amortized analysis is a strategy for analyzing a sequence of
operations to show that the average cost per operation is small,
although a few operations within the sequence might be expensive.

Note that there is no probability involved
Do not get confused with the average-case analysis.

An amortized analysis guarantees the average performance
of each operation in the worst-case.

In our binary counter example, the average cost per increment is

T (n)
n < 2·n

n < 2, and is thus ∈ O(1).

We say the amortized cost of each increment is ∈ O(1).



Question 1 at VisuAlgo Online Quiz

When we say that an operation is amortized Θ(1), we mean that:

A. n operations run in total Θ(n) time in the worst-case

B. n operations run in total Θ(n) time in the expected case

C. n operations run in total Θ(n) time in the best-case

D. n operations run in total Θ(1) time in the expected case



Types of Amortized Analyses

There are three common amortization arguments:

▶ Aggregate method (we have just seen this earlier)

▶ Accounting (Banker’s) method (coming up next)

▶ Potential method (also coming soon)

The aggregate method, though simple, lacks the ‘precision’ on the
other two methods. In particular, the accounting and potential
methods allow a specific amortized cost to be allocated to each
operation (and thus, more flexible).



Accounting Method

Instead of charging the true cost, we charge the i-th operation a
fictitious amortized cost c(i), assuming $1 pays for 1 unit of work
(time), e.g., 1 bit-flip in the binary counter example.

This fee is consumed to perform the operation
and any amount that is not immediately consumed
is stored in the bank to be used by subsequent operations.

The idea: impose an extra charge on inexpensive (but frequent)
operations and use it to pay for expensive (but rare) operations
later on. At all times, the bank balance must not go negative, i.e.,
we must ensure that

∑n
i=1 t(i) ≤

∑n
i=1 c(i),∀n.

Thus, the total amortized costs provides an upper bound on the
total true costs.



Accounting Method for Binary Counter (1)

We now show how to use accounting method for Binary Counter.
First, we identify what are the expensive (but rare) operations?

1011111 // 95 in Decimal

vvvvvv

1100000 // 96 in Decimal, 6 bits are flipped

Observe that 5 bits are reset (1 → 0), and only 1 bit is set (0 → 1).

Can we do the expensive reset (1 → 0) ‘free of charge (foc)’?



Accounting Method for Binary Counter (2)

We charge $2 for each set (0 → 1).
$1 to pay for the actual bit setting (so, this is the minimum).
$1 is stored in the bank (so, this is the ‘extra’).

Observation: At any point, every 1 bit in the counter has
contributed $1 to the overall savings in the bank.

We will later to use those savings to pay for resetting (1 → 0)
so that we can treat this expensive reset as ‘foc’. Example:

1*0 1*1*1*1*0 // each $1$ bit has $1 saving (*)

v

1*0 1*1*1*1*1* // INCREMENT, amortized cost = $2
v | | | | | // 1 to 0 resets are all ‘foc’

1*1*0 0 0 0 0 // INCREMENT, amortized cost = $2 too



Accounting Method for Binary Counter (3)

Invariant that we need to keep: Bank balance never drops below 0.
If this is true, then the sum of the amortized costs provides an
upper bound on the sum of the true costs, and we are done.

Recall this observation: At any point, every 1 bit in the counter
has contributed $1 to the overall savings in the bank.

Claim: After i increments, the amount of money in the bank is
also the number of 1s in the binary representation of i . Proof:

▶ Every time we set a bit 0 → 1, we pay $2.
▶ $1 is used to flip the bit, while $1 is stored in the bank.

▶ Every time we reset a bit from 1 → 0, we use $1 from bank.

▶ Hence, the amount of money in the bank is always equal to
the number of 1s in the binary representation of i .



Accounting Method for Binary Counter (4)

Since the number of 1s in the binary representation of i is
obviously non-negative at all times, the previous slide shows that
the bank balance is always non-negative too.

Therefore the conclusions are:

▶ The amortized cost for each increment = $2 ∈ O(1).

▶ The actual cost for each increment ∈ O(1),
because actual cost ≤ amortized cost.



Question 2 at VisuAlgo Online Quiz

Who is the master of algorithms
pictured below?

A). David Sleator

B). Ron Rivest

C). John Hopcroft

D). Robert Tarjan



Potential Method (1)

The third method that we will learn today is the potential method.
Let:
ϕ be the potential function associated with the DS/algo
ϕ(i) be the potential at the end of the i-th operation

This ϕ(i) must fulfil two conditions:
ϕ(0) = 0 (at the beginning, the potential is 0), and
ϕ(i) ≥ 0, ∀i (for all operations, the potential is non-negative).



Potential Method (2)

The amortized cost of the i-th operation is defined as
= actual cost of the i-th operation plus (ϕ(i)− ϕ(i − 1)).
This (ϕ(i)− ϕ(i − 1)) is called the potential difference ∆ϕ(i).

The amortized cost of n operations is defined as
=

∑
i amortized cost of the i-th operation

= actual cost of n operations + (ϕ(n)− ϕ(0)) // via telescoping
= actual cost of n operations + ϕ(n) // as ϕ(0) = 0
≥ actual cost of n operations

To show that the actual cost of n operations is ∈ O(g(n)),
just show that the amortized cost of n operations is ∈ O(g(n)).



Potential Method - Recipe

The hardest part to use potential method is to find a suitable
potential function ϕ. The heuristic is as follows: Try to select a
suitable ϕ, so that for an expensive i-th operation, ∆ϕ(i) is
negative to such an extent that it nullifies or reduces the effect of
actual (expensive) cost.

Thus, try to observe the expensive operation and see if there is
some quantity that is decreasing during that expensive operation.



Potential Method for Binary Counter (1)

There is only one operation: increment,
and sometimes it is costly (flips many bits).
(although usually it does not (flips only a few bits)).
Is there anything that is decreasing?
Hint: Observe the 1s...

1011111

v|||||

1100000

Answer: The number of 1s decrease.
So, ϕ(i) is the number of 1s in the counter after the i-th increment.



Potential Method for Binary Counter (2)

The actual cost of the i-th increment = li + 1.
where li is the length of the longest suffix with all 1s (1 → 0).
the +1 is because we set just one 0 → 1 in this case.

The ∆ϕ(i) = −li + 1,
because ϕ(i) = x − li + 1 (li bits 1 → 0 and 1 bit 0 → 1),
and ϕ(i − 1) = x ,
where x is the number of 1s.

Therefore:

Actual cost ∆ϕ(i) Amortized cost

li + 1 −li + 1 (li + 1) + (−li + 1) = 2 ∈ O(1)

Thus, the amortized cost of each increment = 2 ∈ O(1),
so we have shown that the actual cost of each increment ∈ O(1).



Dynamic Table

An important amortized analysis with real-life application.
PS: Yes, another half-lecture talking about list.append(x)...

Open https://visualgo.net/en/array?mode=array and do:

▶ Click ‘Create(M,N)’, set M = 1 and N = 0,
and then click ‘Random’.

▶ Click ‘Insert’, and then ‘Append’ any value v , e.g., 7,
repeatedly.

Whenever M = N (the table/array is full), the next call of append
operation will trigger the table-doubling process (make M = 2 ·N),
copying the existing content (N elements), before we append v at
index N; otherwise when M > N, the append operation is very fast.

https://visualgo.net/en/array?mode=array


How large should a table/array be?

Goal: Make the table as small as possible, but large enough so that
it will not overflow (otherwise there are too many wasted spaces).

Problem: What if we don’t know1 the proper size in advance?

Solution: Dynamic tables.
Idea: Whenever the table overflows, we ‘grow’∗ it by allocating
(in C++, we use malloc or new) a new, larger table.
We move all items from the old table into the new one,
and then we free the storage for the old table.
∗ how to grow is subject of discussion soon...

Dynamic tables are implemented as C++ std::vector, Python list,
or Java ArrayList auto-resizing capabilities.

1In Competitive Programming, we usually know this upper bound.



Some Notations

Let:
N: the number of elements in the table.
createTable(M): a system-call that creates a table of size M and
returns its pointer (assumed O(1).
size(T ): the size of table T (assumed O(1)).
copy(T ,T ′): copies the contents of table T into table T ′

(assumed O(size(T ))).
free(T ): free the space (return the space to Operating System)
that was previously occupied by table T (assumed O(1)).



A trivial way to perform Insert(v)

if (n = 0)

T = createTable(1)

else

if (n = size(T)) // full

T’ = createTable(n+1) // is this good?

copy(T,T’)

free(T)

T = T’

insert v to the back of T

n = n+1

PS: There is no equivalent VisuAlgo /array animation,
but it should be easy to see that the time complexity of
n calls of Insert(v) is O(n2)



A better way to perform Insert(v)

if (n = 0)

T = createTable(1)

else

if (n = size(T)) // full

T’ = createTable(2*n) // is this NOW good?

copy(T,T’)

free(T)

T = T’

insert v to the back of T

n = n+1

Now switch to https://visualgo.net/en/array?mode=array,
and witness the live animation.

https://visualgo.net/en/array?mode=array


Worst-case Analysis

For the double-when-full strategy,
consider a sequence of n insertions.

If the worst-case time to execute one insertion is O(n),
is the worst-case time for n insertions is n · O(n) ∈ O(n2)?
Again, is this tight?



Amortized Analysis

Observe, once the table is full,
we create a table of double the size.

It will take O(1) time for the next many insertions
that fill in the empty slots, until the table is full again.

So, the heavy operation (of copying the table T into new table T ′),
will only occur only when n − 1 is a power of 2.



Aggregate Method for Dynamic Table

i sizei t(i)1 t(i)2

1 1 - 1

2 2 1 1

3 4 2 1

4 4 - 1

5 8 4 1

6 8 - 1

7 8 - 1

8 8 - 1

9 16 8 1

10 16 - 1

Let t(i) be the cost of the i-th
insertion; it can be split into two:

t(i)1 = i if i − 1 is an exact
power of 2 (cost of doubling and
copying due to full table)

t(i)2 = 1 for all i
(cost of insertion)



Aggregate Method, Summary

Cost of n insertions T (n) is thus:

T (n) =
∑n

i=1(t(i)
1 + t(i)2)

T (n) =
∑n

i=1 t(i)
1 +

∑n
i=1 t(i)

2

T (n) =
∑log(n−1)

j=0 2j +
∑n

i=1 1

T (n) = 2log(n−1)+1 − 1 + n
T (n) ≤ 2 · (n − 1) + n
T (n) ≤ 3 · n

Thus, the average cost of each insertion in dynamic table is:
T (n)
n = 3·n

n = 3 ∈ O(1).



Accounting Method for Dynamic Table

Is reserved for Tut08 Q2, try it

https://www.comp.nus.edu.sg/~stevenha/cs3230/tutorials/tut08.pdf


Potential Method for Dynamic Table

123j, j = i − 1
Before Insert(v) ????

1234i67k, k = 2(i − 1)
After Insert(v) ????v...

Insert(v) Actual cost ∆ϕ(i) Amortized cost

Case 1: Full i ? ?

When the table is full, the actual cost of the i-th Insert(v) is
(i − 1) to copy(T ,T ′), plus 1, so (i − 1) + 1 = i operations.

What should be the suitable potential function ϕ?
Is there anything that has decreased during this Case 1?
Seems like everything including the size(T ) has increased...
What about −size(T )?
Can we set ϕ = −size(T )?



Question 3 at VisuAlgo Online Quiz

Does the function ϕ = −size(T ) satisfies all the properties of a
potential function ϕ?

A. Yes

B. No



Potential Method for Dynamic Table (Case 1)

123j, j = i − 1
Before Insert(v) ????

1234i67k, k = 2(i − 1)
After Insert(v) ????v...

Now that ϕ = 2i − size(T ), we have:

Insert(v) Actual cost ∆ϕ(i) Amortized cost

Case 1: Full i 3− i i + (3− i) = 3 ∈ O(1)

Q: How to derive ∆ϕ(i) = 3− i for this Case 1?



Potential Method for Dynamic Table (Case 2)

12j, j = i − 1
Before Insert(v) ???.

123i

After Insert(v) ???v

Now that ϕ = 2i − size(T ), we have:

Insert(v) Actual cost ∆ϕ(i) Amortized cost

Case 1: Full i 3− i i + (3− i) = 3 ∈ O(1)
Case 2: Not full 1 2 1 + 2 = 3 ∈ O(1)

Q: How to derive ∆ϕ(i) = 2 for this Case 2?



Potential Method for Dynamic Table (Conclusion)

Now that ϕ = 2i − size(T ), we have:

Insert(v) Actual cost ∆ϕ(i) Amortized cost

Case 1: Full i 3− i i + (3− i) = 3 ∈ O(1)
Case 2: Not full 1 2 1 + 2 = 3 ∈ O(1)

We have shown: the amortized cost of each insertion = 3 ∈ O(1).
Therefore, the actual cost of each insertion ∈ O(1).



Conclusions

Amortized costs can provide a clean abstraction of data-structure
performance.

Amortized analysis can be performed using either of the three
methods discussed in this lecture: aggregate, accounting, or
potential method. However, each method has some situations
where it is arguable the simplest or the most precise.

Different schemes may work for assigning amortized costs c(i) in
the accounting method, or choosing potential function ϕ in the
potential method, sometimes yielding radically different bounds.



Acknowledgement

The slides are modified from previous editions of this course and
similar course elsewhere

List of credits: Erik D. Demaine, Charles E. Leiserson, Surender
Baswana, Ken Sung, Arnab Battacharya, Diptarka Chakraborty,
Sanjay Jain.


	Introduction
	Binary Counter
	Aggregate Method
	Accounting Method
	Potential Method

	Dynamic Table
	Aggregate Method
	Accounting Method
	Potential Method

	Wrapping-Up

