CS3230 – Design and Analysis of Algorithms

(S1 AY2024/25)

Letture 0: Prablem Peductions (S1 AY2024/25)

Lecture 9: Problem Reductions

• In Week 6, we saw that the problem of finding a longest palindromic subsequence of a string reduces to finding an LCS of two strings.

Longest palindromic subsequence of $x \mid$ \longrightarrow LCS of x and reverse(x)

• In Week 6, we saw that the problem of finding a **longest palindromic** subsequence of a string reduces to finding an LCS of two strings.

Longest palindromic subsequence of $x \mid$ \longleftarrow LCS of x and reverse(x)

LCS of two strings of length n can be computed in $O(n^2)$ time. $\left|\begin{array}{cc} 1 & \hline \end{array}\right|$ of let

Longest palindromic subsequence of a string of length n can be computed in $O(n^2)$ time. $\left| \right|$

No need to design a new algorithm from scratch.

- Some other examples:
	- Homework problems. Reduction to Single-Source Shortest Paths.
	- Midterm exam. Reduction to the Knapsack problem.

Reductions between computational problems is a fundamental idea in algorithm design.

• Viewed another way, reductions also allow us to show hardness of a problem from hardness of some other problem. This implies that LCS also cannot be computed in $O(n^{1.99})$ time.

This implies that LCS also <u>cannot</u> be computed in $O(n^{1.99})$ time.

This implies that LCS also <u>cannot</u> be computed in $O(n^{1.99})$ time. reductions
ther way, reductions also allow us to show hardness of a
m hardness of some other problem.

subsequence cannot be computed in $O(n^{1.99})$ time.

mplies that LCS also cannot be computed in $O(n^{1.99})$ time.

Such a lower bound is currently not known.

Suppose we can show that longest palindromic

• We informally say that problem A reduces to problem B if A can be solved as follows. PTODIEM TEQUCTIONS

We informally say that problem A reduces to

solved as follows.

Another word for "input"
 Input: An <u>instance</u> α of A

1. Convert α to an instance β of B.

2. Solve β to obtain a solutio

Another word for "input"

Input: An instance α of A

-
-
-

• We informally say that problem A reduces to problem B if A can be solved as follows.

• We informally say that problem A reduces to problem B if A can be solved as follows.

Matrix multiplication and squaring

MAT-MULTI

Input: two $(n \times n)$ matrices A and B

Output: $A \cdot B$

MAT-SQR

Input: one $(n \times n)$ matrix C

Output: C^2

Matrix multiplication and squaring

Claim: MAT-SQR reduces to MAT-MULTI.

Proof: Given input matrix C for MAT-SQR, let $A = C$ and $B = C$ be the inputs for MAT-MULTI. Clearly, $A \cdot B = C^2$.

Matrix multiplication and squaring

```
MAT-MULTI
```
Input: two $(n \times n)$ matrices A and B

Output: $A \cdot B$

Claim: MAT-MULTI reduces to MAT-SQR.

Proof: Given input matrices \vec{A} and \vec{B} :

- Let $C = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ be the input for MAT-SQR.
- From $C^2 = \begin{bmatrix} AB & 0 \ 0 & BA \end{bmatrix}$ we can learn AB.

MAT-SQR

Input: one $(n \times n)$ matrix C

Output: C^2

Exercise

• Consider the following two problems:

Input: \Box An array *B* of length *n*

```
Output:
\Box i, j \in [n] such that B[i] + B[j] = 0
```
$SUM(0)$ $SUM(T)$

Input: \Box An array *B* of length *n* \Box A number T

Output: if such indices (i, j) exist.
 (i, j) exist.
 (i, j) exist.

if such indices (i, j) exist.

Exercise

- By setting $T = 0$, SUM(0) reduces to SUM(T).
- Can you reduce SUM(T) to SUM(0)?
- Consider the following two problems:

$SUM(0)$ $SUM(T)$

Input: \Box An array B of length n

```
Output:
\Box i, j \in [n] such that B[i] + B[j] = 0
```
Input: \Box An array *B* of length *n* \Box A number T

```
Output:
if such indices (i, j) exist.<br>
(i, j) exist.<br>
(i, j) exist.
```
if such indices (i, j) exist.

$p(n)$ -time Reduction

• We say that there is a $p(n)$ -time reduction from A to B if A can be solved as follows.

Running time composition

Claim:

Suppose the following two conditions are met:

- There is a $p(n)$ -time reduction from problem A to problem B.
- There is a $T(n)$ -time algorithm to solve problem B on instances of size n.

There is a $\bigl(T\bigl(p(n)\bigr) + O\bigl(p(n)\bigr)\bigr)$ -time algorithm to solve problem A on instances of size n.

Running time composition

There is a $\big(T\big(p(n)\big) + O\big(p(n)\big)\big)$ -time algorithm to solve problem A on instances of size n.

- If there is an $O(n^c)$ -time reduction from A to B for some constant c, then:
	- We say that there is a **polynomial-time reduction** from A to B .
	- We write $A \leq_{P} B$.

- If there is an $O(n^c)$ -time reduction from A to B for some constant c, then:
	- We say that there is a **polynomial-time reduction** from \vec{A} to \vec{B} .
	- $p(n) \in O(n^c)$

- If there is an $O(n^c)$ -time reduction from A to B for some constant c, then: ere is an $O(n^c)$ -time reduction from A to B for some
 ωe say that there is a **polynomial-time reduction** from A to B.
 ωe write $A \leq_P B$.
 $p(n) \in O(n^c)$
 $p(n) \in O(n^c)$
 $p \to q$ is the same as $(\neg q \to \neg p)$
 $p \to q$ is th
	- We say that there is a **polynomial-time reduction** from \vec{A} to \vec{B} .
	- $p(n) \in O(n^c)$ \mathcal{C}

• We write $A \leq_{P} B$. $p(n) \in O(n^{c})$
Suppose A cannot be solved in polynomial time.

Then B also cannot be solved in polynomial time.

- If there is an $O(n^c)$ -time reduction from A to B for some constant c, then:
	- We say that there is a **polynomial-time reduction** from A to B .
	- We write $A \leq_{P} B$.

Solvable in polynomial time

- Intuition:
	- If B is easy, then so is A .
	- If A is hard, then so is B .

Cannot be solved in polynomial time

• A working definition of problems efficiently solvable in practice is that they have polynomial-time algorithms using "standard" computing hardware.

von Neumann (1953)

Nash (1955)

Gödel (1956)

Cobham (1964)

Edmonds (1965)

Rabin (1966)

- Polynomial functions are closed under compositions.
	- If both $T(n)$ and $p(n)$ are polynomial, then $T(p(n))$ is also polynomial.

- Why is it not a good idea to define "efficiently solvable" as $O(n^2)$?
	- No composability.
	- Why $O(n^2)$ is considered efficient and $O(n^{2.001})$ is considered inefficient?

- The notion of polynomial-time algorithms is robust:
	- Even if the underlying computing model/hardware is "reasonably" changed, the class of polynomial-time solvable problems remain unchanged.
		- Word-RAM vs. bit-RAM
		- RAM models vs. Turing machines

- The notion of polynomial-time algorithms is robust:
- Even if the underlying computing model/hardware is "reasonably" changed, the class of polynomial-time solvable problems remain unchanged. Why polynomial time?

• The notion of polynomial-time algorithms is **robust**:

• Even if the underlying computing model/hardware is "reasonably" changed,

the class of polynomial-time solvable problems remain unchanged.

	- Word-RAM vs. bit-RAM
	- RAM models vs. Turing machines

- $O(n \log n)$?
- $O(n \log^2 n)$?

• Pros:

- Robustness.
- Closure under composition.
- \bullet ...

• Cons:

• An $O(n^{100})$ -time algorithm is clearly inefficient.

Fortunately, such algorithms are rare.

Input size

• Recall: The iterative algorithm to compute $\text{Fib}(n)$ takes $O(n)$ time.

 $IFib(n)$

- If $n \leq 1$
	- return n
- Else,
	- $prev2 = 0$
	- $prev1 = 1$
	- for $i = 2$ to n
		- temp $=$ prev1
		- $prev1 = prev1 + prev2$
		- $prev2 = temp$
	- return prev1

Is this polynomial-time?

 $\ell = \lceil \log n \rceil$ is the length of the binary representation of n.

Input size

• Recall: The iterative algorithm to compute $\text{Fib}(n)$ takes $O(n)$ time.

 $IFib(n)$

- If $n \leq 1$
	- return n
- Else,
	- prev2 = 0
	- prev1 = 1
	- for $i=2$ to n.
		- temp $=$ prev1
		- $prev1 = prev1 + prev2$
		- $prev2 = temp$
	- return prev1

Is this polynomial-time?

 $O(2^{\ell})$ time.

• When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.

We can encode *n* using $\ell = \lceil \log n \rceil$ bits by taking its binary representation.

IFib (n) is not a polynomial-time algorithm.

• When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.

We can encode *n* using $\ell = \lceil \log n \rceil$ bits by taking its binary representation.

IFib (n) is not a polynomial-time algorithm.

We can also encode *n* using $\ell = n$ bits by $\widehat{0 \cdots 0}$. n times .

IFib (n) is a polynomial-time algorithm.

• When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.

We can encode *n* using $\ell = \lceil \log n \rceil$ bits by taking its binary representation.

IFib (n) is not a polynomial-time algorithm.

We can also encode *n* using $\ell = n$ bits by $\widehat{0 \cdots 0}$. .

IFib (n) is a polynomial-time algorithm.

 $n \text{ times}$ By default, we consider the most natural encoding, so IFib (n) is usually not considered a polynomial-time algorithm.

• When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.

We can encode *n* using $\ell = \lceil \log n \rceil$ bits by taking its binary representation.

IFib (n) is not a polynomial-time algorithm.

We can also encode *n* using $\ell = n$ bits by $\widehat{0 \cdots 0}$. .

IFib (n) is a polynomial-time algorithm.

 $n \text{ times}$ By default, we consider the most natural encoding, so IFib (n) is usually not considered a polynomial-time algorithm.

The divide-and-conquer algorithm to compute $\text{Fib}(n)$, which takes $\theta(\log n) = \theta(\ell)$ time, is considered a polynomial-time algorithm.

- When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.
- For some problems, there is flexibility in selecting the encoding.
	- How do you represent a graph $G = (V, E)$ as a binary string?
		- \bullet $O(|V|^2)$ bits?
		- $O(|E| \log |V|)$ bits?
		- \bullet …

- When we say that an algorithm takes polynomial time, we usually mean that the runtime is polynomial in the **length of the encoding** of the problem instance, in terms of the number of bits.
- For some problems, there is flexibility in selecting the encoding.
	- How do you represent a graph $G = (V, E)$ as a binary string?
		- \bullet $O(|V|^2)$ bits?
		- $O(|E| \log |V|)$ bits?
		- …

Usually, the choice of the encoding **does not affect** the notion of polynomial-time algorithms.

Pseudo-polynomial time

The runtime could be exponential in the length of the input.

The runtime could be exponential

Pseudo-polynomial time

An algorithm that runs in time <u>polynomial in the numeric value</u> of the

input is called a **pseudo-polynomial-time** algorithm. input is called a pseudo-polynomial-time algorithm.

Pseudo-polynomial time

The runtime could be exponential in the length of the input.

The runtime could be exponential

Pseudo-polynomial time

An algorithm that runs in time <u>polynomial in the numeric value</u> of the

input is called a **pseudo-polynomial-time** algorithm. input is called a pseudo-polynomial-time algorithm.

- If $n \leq 1$
	- return n
- Else,
	- prev $2=0$
	- prev $1 = 1$
	- for $i = 2$ to n
		- temp $=$ prev1
		- prev1 $=$ prev1 + prev2
		- prev $2 = temp$
	- return prev1

This is pseudo-polynomial time.

The iterative algorithm to compute $\text{Fib}(n)$ takes $O(n)$ time.
The knapsack problem

• Recall:

The dynamic programming algorithm for **knapsack** finishes in $O(nW)$ time.

The greedy algorithm for fractional knapsack finishes in $O(n \log n)$ time.

- $n =$ the number of items.
- $W =$ the capacity constraint.

Question 1 @ VisuAlgo online quiz
• _{Recall:}

• Recall:

The dynamic programming algorithm for **knapsack** finishes in $O(nW)$ time.

The greedy algorithm for fractional knapsack finishes in $O(n \log n)$ time.

- $n =$ the number of items.
-

• $W =$ the capacity constraint. $\left($ Question: Are these algorithms polynomial-time?

m for knapsack finishes in $O(nW)$ time.

knapsack finishes in $O(n \log n)$ time.

Question: Are these algorithms polynomial

"Yes for both

"Yes for knapsack, no for fractional knapsa m for knapsack finishes in $O(nW)$ time.

 Anapsack finishes in $O(n \log n)$ time.

 Question: Are these algorithms polynomial-time?

Yes for both

No for knapsack, yes for fractional knapsack

No for both

 No for knapsack, yes for fractional knapsack ■No for both

Recap

- Reduction is a basic idea in algorithm design:
	- Using an algorithm for one problem to solve another.

Recap

- Reduction is a basic idea in algorithm design:
	- Using an algorithm for one problem to solve another.

Recap

- Reduction is a basic idea in algorithm design:
	- Using an algorithm for one problem to solve another.

- - the reverse of the other.

Computational complexity theory

Computational complexity theory
 \downarrow

• A research field studying <u>sets of computational problems</u> and not

<u>individual computational problems</u>. individual computational problems.

Computational complexity theory

Computational complexity theory
 \downarrow

• A research field studying <u>sets of computational problems</u> and not

<u>individual computational problems</u>. individual computational problems.

• Some open questions:

- $P = PSPACE?$ Is it true that any computational problem solvable in polynomial space also solvable in polynomial time?
- $P = RPP?$ Is it true that any computational problem solvable in randomized polynomial time also solvable in deterministic polynomial time?
- $ZPP = RPP$? Is it true that any computational problem solvable in Monte Carlo randomized polynomial time also solvable in Las Vegas randomized polynomial time?

Computational complexity theory

 $\begin{array}{l} \textsf{Computational complexity theory} \\ \downarrow \\ \textsf{• A research field studying \underline{sets of computational problems}} \textsf{ and not} \\ \underline{\textsf{individual computational problems}}. \end{array}$ individual computational problems.

Need a framework to talk about all computational problems using the same language.

Decision vs. optimization

- Decision Problem: Given a directed graph G and two vertices u and v , is there a path from u to v of length $\leq k$?
- Optimization Problem: Given a directed graph G and two vertices u and v, what is the length of a shortest path from u to v ?

Decision vs. optimization

• Any given optimization problem can be converted into a decision problem:

Given an instance of the optimization problem and a number k , decide if there exists a solution whose value is $\leq k$ (or $\geq k$).

> Depending on whether the optimization problem is maximization or minimization.

Decision reduces to optimization

Given the value of the optimal solution, simply check whether it is $\leq k$.

• The decision problem is no harder than the optimization problem.

in a different sense!

in a different sense!

Optimization reduces to decision

We can use an algorithm for the decision problem to do a binary search for the value of the optimal solution.

in a different sense!

in a different sense!

Optimization reduces to decision

We can use an algorithm for the decision problem to do a binary search for the value of the optimal solution.

• The decision problem can be solved in polynomial time if and only if the optimization problem can be solved in polynomial time.

We can focus on decision problems.

Karp reduction

Karp reduction
• Given two <u>decision</u> problems A and B, a **polynomial-time reduction**
from A to B, denoted $A \leq_{P} B$, is defined as follows. from A to B, denoted $A \leq_{P} B$, is defined as follows.

A transformation from instances α of A to instances β of B satisfying the two conditions:

- α is a YES-instance for A if and only if β is a YES-instance for B.
- The transformation takes polynomial time in the size of α .

Richard Karp

Question 2 ϖ VisuAlgo online quiz

Suppose that $A \leq_{P} B$.
Which of the following statements is **true**?

-
- Question 2 @ VisuAlgo online quiz

Suppose that $A \leq_{P} B$.

Which of the following statements is **true?**

a) If A can be solved in polynomial time, then so can B.

b) If A can be solved in polynomial time, then B cannot polynomial time.
-
- Suppose that $A \leq_{P} B$.

Which of the following statements is **true?**

a) If A can be solved in polynomial time, then so can B.

b) If A cannot be solved in polynomial time, then B cannot be solved in

c) If A cannot be polynomial time.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a vertex cover if every edge $e = \{u, v\} \in E$ is covered by X. VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Vertex COVer

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a

vertex cover if every edge $e = \{u, v\} \in E$ is <u>covered</u> by X.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Vertex COVer

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a

vertex cover if every edge $e = \{u, v\} \in E$ is <u>covered</u> by X.

 $X = \{b, x\}$ is **not** a vertex cover because $\{z, y\}$ and $\{y, t\}$ are not covered.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a vertex cover if every edge $e = \{u, v\} \in E$ is <u>covered</u> by X. VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Vertex COVer

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a

vertex cover if every edge $e = \{u, v\} \in E$ is <u>covered</u> by X.

 $X = \{b, x, y\}$ is a vertex cover because all edges are covered.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Vertex COVer

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is a

vertex cover if every edge $e = \{u, v\} \in E$ is <u>covered</u> by X. d graph $G = (V, E)$, a subset $X \subseteq V$ is a
 $= \{u, v\} \in E$ is covered by X.
 \uparrow
 \downarrow
 Optimization version: smallest cardinality

• Compute the size of a <u>minimum</u> vertex cover.
 Decision version:

• Decide if there

Optimization version: smallest cardinality

- Decision version:
- Decide if there is a vertex cover of size $\leq k$.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$. VisuAlgo (vertex cover): <u>https://visualgo.net/en/mvc</u>

Independent set

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an

independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an VisuAlgo (vertex cover): <u>https://visualgo.net/en/mvc</u>

Independent set

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an

independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.

 $X = \{b, x\}$ is not an independent set because $\{b, x\} \in E$.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an VisuAlgo (vertex cover): <u>https://visualgo.net/en/mvc</u>

Independent set

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an

independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.

Is it a largest one?

 $X = \{b, y\}$ is an independent set.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an VisuAlgo (vertex cover): <u>https://visualgo.net/en/mvc</u>

Independent set

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an

independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.

There can be more than one maximum independent set.

 $X = \{a, z, t\}$ is a **maximum** independent set.

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an VisuAlgo (vertex cover): <u>https://visualgo.net/en/mvc</u>

Independent set

Definition: For an undirected graph $G = (V, E)$, a subset $X \subseteq V$ is an

independent set if for every $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.

Optimization version:

- d graph $G = (V, E)$, a subset $X \subseteq V$ is an $u \in X$ and $v \in X$, we have $\{u, v\} \notin E$.
 Optimization version:

 Compute the size of a <u>maximum</u> independent set.
 Decision version:

 Decide if there is an independent set Decision version:
- Decide if there is an independent set of size $\geq k$.

VC vs. IS

VC: Vertex Cover

Input: A graph $G = (V, E)$ and a positive integer k.

```
Can you see a relation?
```
IS: Independent Set

Input: A graph $G = (V, E)$ and a positive integer k. **Goal:** Decide if there is an independent set of size $\geq k$.

VC: Vertex Cover

Input: A graph $G = (V, E)$ and a positive integer k.

```
Can you see a relation?
```
IS: Independent Set

Input: A graph $G = (V, E)$ and a positive integer k. **Goal:** Decide if there is an independent set of size $\geq k$.

Proof (\rightarrow **):** If $X \subseteq V$ is a vertex cover, then $V \setminus X$ is an independent set.

- Consider any $u \in V \setminus X$ and $v \in V \setminus X$.
- We just need to show that $\{u, v\} \notin E$.

Proof (\rightarrow **):** If $X \subseteq V$ is a vertex cover, then $V \setminus X$ is an independent set.

- Consider any $u \in V \setminus X$ and $v \in V \setminus X$.
- We just need to show that $\{u, v\} \notin E$.

If $\{u, v\} \in E$, then $\{u, v\}$ is an edge not covered by X , which is impossible.

Proof (\bigoplus **):** If $V \setminus X$ is an independent set, then $X \subseteq V$ is a vertex cover.

- Consider any $\{u, v\} \in E$.
- We just need to show that $\{u, v\}$ is covered by X , meaning that at least \sum VS. \sum **Claim:** $X \subseteq V$ is a vertex cove

of (\blacklozenge): If $V \setminus X$ is an independent

then $X \subseteq V$ is a vertex cover.

Consider any $\{u, v\} \in E$.

We just need to show that $\{u, v\}$ is

covered by X , meaning that

Proof (\bigoplus **):** If $V \setminus X$ is an independent set, then $X \subseteq V$ is a vertex cover.

- Consider any $\{u, v\} \in E$.
- We just need to show that $\{u, v\}$ is covered by X , meaning that at least one of and is in .

If both u and v are not in X, then $V \setminus X$ is not an independent set.

Looking forward

• In the next week, we will see that there are many problems admitting polynomial-time reductions to and from **VC** and **IS**.
If any one of these problems can

Richard Karp (1972) "Reducibility Among Combinatorial Problems"

be solved in polynomial time, then all these problems can be solved in polynomial time.

Acknowledgement

• The slides are modified from previous editions of this course and similar course elsewhere. **Control Control Control Chankr**
 e slides are modified from previous editions

burse elsewhere.
 est of credits:

• Surender Baswana

• Arnab Bhattacharya

• Diptarka Chakraborty

• Yi-Jun Chang

• Erik Demaine

• Ste

• List of credits:

- Surender Baswana
- Arnab Bhattacharya
-
- Yi-Jun Chang
- Erik Demaine
- Steven Halim
- Sanjay Jain
- Charles Leiserson
- Wing-Kin Sung
- Kevin Wayne