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Lecture 9: Problem Reductions



Problem reductions

• In Week 6, we saw that the problem of finding a longest palindromic 
subsequence of a string reduces to finding an LCS of two strings.

Longest palindromic subsequence of LCS of and reverse( )



Problem reductions

• In Week 6, we saw that the problem of finding a longest palindromic 
subsequence of a string reduces to finding an LCS of two strings.

Longest palindromic subsequence of LCS of and reverse( )

LCS of two strings of length 
can be computed in ଶ time. 

Longest palindromic subsequence of a string 
of length can be computed in ଶ time. 

No need to design a new algorithm from scratch.



Problem reductions

• Some other examples:
• Homework problems.
• Midterm exam.

Reductions between computational problems is a fundamental idea in algorithm design.

Reduction to Single-Source Shortest Paths.

Reduction to the Knapsack problem.



Problem reductions

• Viewed another way, reductions also allow us to show hardness of a 
problem from hardness of some other problem.

This implies that LCS also cannot be computed in ଵ.ଽଽ time.

Suppose we can show that longest palindromic 
subsequence cannot be computed in ଵ.ଽଽ time. 

Such a lower bound is currently not known.



Problem reductions

• We informally say that problem reduces to problem if can be 
solved as follows.

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

Another word for “input”
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• We informally say that problem reduces to problem if can be 
solved as follows.

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

Input string 𝑥

LCSLongest palindromic subsequence

𝐴 = 𝑥
𝐵 = reverse 𝑥

Run an LCS algorithm on 𝛽.

𝐴 𝛼 = 𝐵 𝛽



Problem reductions

• We informally say that problem reduces to problem if can be 
solved as follows.

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

Input string 𝑥

LCSLongest palindromic subsequence

𝐴 = 𝑥
𝐵 = reverse 𝑥

Run an LCS algorithm on 𝛽.

𝐴 𝛼 = 𝐵 𝛽

(1) (2) (3)



Matrix multiplication and squaring

Input: two matrices and 

Output: 

MAT-MULTI

Input: one matrix 

Output: ଶ

MAT-SQR



Matrix multiplication and squaring

Claim: MAT-SQR reduces to MAT-MULTI.

Proof: Given input matrix for MAT-SQR, let and be the 
inputs for MAT-MULTI. Clearly, .

Input: two matrices and 

Output: 

MAT-MULTI

Input: one matrix 

Output: ଶ

MAT-SQR



Matrix multiplication and squaring

Claim: MAT-MULTI reduces to MAT-SQR.

Proof: Given input matrices and :

• Let be the input for MAT-SQR.

• From ଶ we can learn .

Input: two matrices and 

Output: 

MAT-MULTI

Input: one matrix 

Output: ଶ

MAT-SQR



Exercise

• Consider the following two problems:

SUM(T)SUM(0)

Input:
 An array of length 

Output:
 such that 

Input:
 An array of length 
 A number 

Output:
 such that if such indices 𝑖, 𝑗 exist.

if such indices 𝑖, 𝑗 exist.



Exercise

• Consider the following two problems:

SUM(T)SUM(0)

Input:
 An array of length 

Output:
 such that 

Input:
 An array of length 
 A number 

Output:
 such that if such indices 𝑖, 𝑗 exist.

if such indices 𝑖, 𝑗 exist.

• By setting , SUM(0) reduces to SUM(T).
• Can you reduce SUM(T) to SUM(0)?



-time Reduction

• We say that there is a -time reduction from to if can be 
solved as follows.

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

At most 𝑝(𝑛) time.

(1) (2) (3)

At most 𝑝(𝑛) time.

At most 𝑝(𝑛) size.



-time Reduction

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

At most 𝑝(𝑛) time.

At most 𝑝(𝑛) time.

At most 𝑝(𝑛) size.

Examples:

• -time reduction from longest 

palindromic subsequence to LCS.

• -time reduction from matrix 

multiplication to matrix squaring.



Running time composition

Claim: 

Suppose the following two conditions are met:
• There is a -time reduction from problem to problem .
• There is a -time algorithm to solve problem on instances of size .

There is a -time algorithm to solve problem on instances of size .



Running time composition

Input: An instance of 

1. Convert to an instance of .

2. Solve to obtain a solution for .

3. Convert to a solution for .

Output: A solution for .

At most 𝑝(𝑛) time.

At most 𝑝(𝑛) time.

At most 𝑝(𝑛) size.

At most 𝑇 𝑝 𝑛  time.

There is a -time algorithm to solve problem on instances of size .



Polynomial-time reduction

• If there is an -time reduction from to for some constant , 
then:

• We say that there is a polynomial-time reduction from to .
• We write  . 



Polynomial-time reduction

• If there is an -time reduction from to for some constant , 
then:

• We say that there is a polynomial-time reduction from to .
• We write  . 

Suppose has a polynomial-time algorithm.

Then also has a polynomial-time algorithm.

Running time composition

𝑇 𝑛 ∈ 𝑛ை ଵ time

𝑇 𝑝 𝑛 + 𝑂 𝑝 𝑛 ⊆ 𝑛ை ଵ time

𝑝 𝑛 ∈ 𝑂 𝑛



Polynomial-time reduction

• If there is an -time reduction from to for some constant , 
then:

• We say that there is a polynomial-time reduction from to .
• We write  . 

Suppose cannot be solved in polynomial time.

Then also cannot be solved in polynomial time.

𝑝 𝑛 ∈ 𝑂 𝑛

𝑝 → 𝑞 is the same as ¬𝑞 → ¬𝑝



Polynomial-time reduction

• If there is an -time reduction from to for some constant , 
then:

• We say that there is a polynomial-time reduction from to .
• We write  . 

• Intuition:
• If is easy, then so is . 
• If is hard, then so is . 

Solvable in polynomial time

Cannot be solved in polynomial time



Why polynomial time?

• A working definition of problems efficiently solvable in 
practice is that they have polynomial-time algorithms using 
“standard” computing hardware.



Why polynomial time?

• Polynomial functions are closed under compositions.
• If both and are polynomial, then is also polynomial.

• Why is it not a good idea to define “efficiently solvable” as ?
• No composability.
• Why ଶ is considered efficient and ଶ.ଵ is considered inefficient?

or any other specific function



Why polynomial time?

• The notion of polynomial-time algorithms is robust:
• Even if the underlying computing model/hardware is “reasonably” changed, 

the class of polynomial-time solvable problems remain unchanged.
• Word-RAM vs. bit-RAM
• RAM models vs. Turing machines



Why polynomial time?

• The notion of polynomial-time algorithms is robust:
• Even if the underlying computing model/hardware is “reasonably” changed, 

the class of polynomial-time solvable problems remain unchanged.
• Word-RAM vs. bit-RAM
• RAM models vs. Turing machines

What is the time complexity of mergesort on an array of integers of bits?
• ?
• ଶ ?



Why polynomial time?

• Pros:
• Robustness.
• Closure under composition.
• …

• Cons:
• An ଵ -time algorithm is clearly inefficient.

Fortunately, such algorithms are rare.



Input size

• Recall: The iterative algorithm to compute takes time.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Is this polynomial-time?



Input size

• Recall: The iterative algorithm to compute takes time.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1

Is this polynomial-time?

time.

ℓ = log 𝑛 is the length of the binary representation of 𝑛.



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

We can encode using bits by taking its binary representation.

is not a polynomial-time algorithm.



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

We can encode using bits by taking its binary representation.

is not a polynomial-time algorithm.

We can also encode using bits by 
 ୲୧୫ୣୱ

.

is a polynomial-time algorithm.



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

We can encode using bits by taking its binary representation.

is not a polynomial-time algorithm.

We can also encode using bits by 
 ୲୧୫ୣୱ

.

is a polynomial-time algorithm.

By default, we consider the most natural
encoding, so is usually not 
considered a polynomial-time algorithm.



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

We can encode using bits by taking its binary representation.

is not a polynomial-time algorithm.

We can also encode using bits by 
 ୲୧୫ୣୱ

.

is a polynomial-time algorithm.

By default, we consider the most natural 
encoding, so is usually not 
considered a polynomial-time algorithm.

The divide-and-conquer algorithm to compute , which takes 
time, is considered a polynomial-time algorithm.



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

• For some problems, there is flexibility in selecting the encoding. 
• How do you represent a graph as a binary string?

• ଶ bits?
• bits?
• …



A note on encoding

• When we say that an algorithm takes polynomial time, we usually 
mean that the runtime is polynomial in the length of the encoding of 
the problem instance, in terms of the number of bits.

• For some problems, there is flexibility in selecting the encoding. 
• How do you represent a graph as a binary string?

• ଶ bits?
• bits?
• …

Usually, the choice of the encoding does not affect the notion of polynomial-time algorithms.



Pseudo-polynomial time

An algorithm that runs in time polynomial in the numeric value of the 
input is called a pseudo-polynomial-time algorithm.

The runtime could be exponential 
in the length of the input.



Pseudo-polynomial time

An algorithm that runs in time polynomial in the numeric value of the 
input is called a pseudo-polynomial-time algorithm.

The runtime could be exponential 
in the length of the input.

• If 
• return 

• Else, 
• prev2 
• prev1 
• for to 

• temp prev1 
• prev1 prev1 prev2 
• prev2 temp 

• return prev1
The iterative algorithm to 
compute takes time.

This is pseudo-polynomial time.



The knapsack problem

• Recall:

The dynamic programming algorithm for knapsack finishes in time. 

The greedy algorithm for fractional knapsack finishes in time. 

• the number of items.
• the capacity constraint.



Question 1 @ VisuAlgo online quiz

• Recall:

The dynamic programming algorithm for knapsack finishes in time. 

The greedy algorithm for fractional knapsack finishes in time. 

• the number of items.
• the capacity constraint. Question: Are these algorithms polynomial-time?

Yes for both
Yes for knapsack, no for fractional knapsack
No for knapsack, yes for fractional knapsack
No for both



Recap

• Reduction is a basic idea in algorithm design: 
• Using an algorithm for one problem to solve another.



Recap

• Reduction is a basic idea in algorithm design: 
• Using an algorithm for one problem to solve another.



If  is easily solvable, then so is .

If  is hard, then so is .



Recap

• Reduction is a basic idea in algorithm design: 
• Using an algorithm for one problem to solve another.



If  is easily solvable, then so is .

If  is hard, then so is .

• Intuition: can be seen as a special case of .
• Longest palindromic subsequence is a special case of LCS where one string is 

the reverse of the other.



Computational complexity theory

• A research field studying sets of computational problems and not 
individual computational problems.



Computational complexity theory

• A research field studying sets of computational problems and not 
individual computational problems.

• Some open questions:
• ?

• ?

• ?

Is it true that any computational problem solvable in 
polynomial space also solvable in polynomial time?

Is it true that any computational problem solvable in randomized 
polynomial time also solvable in deterministic polynomial time?

Is it true that any computational problem solvable in Monte Carlo randomized 
polynomial time also solvable in Las Vegas randomized polynomial time?



Computational complexity theory

• A research field studying sets of computational problems and not 
individual computational problems.

Need a framework to talk about all computational 
problems using the same language.



Decision problems

• A decision problem is a function that maps an instance space to the 
solution space .

The set of all binary strings that are valid encodings.

Decision ProblemInput YES/NO



Decision vs. optimization

• Decision Problem: Given a directed graph and two vertices and , 
is there a path from to of length ?

• Optimization Problem: Given a directed graph and two vertices 
and , what is the length of a shortest path from to ?



Decision vs. optimization

• Any given optimization problem can be 
converted into a decision problem:

Given an instance of the optimization problem and a number , 
decide if there exists a solution whose value is (or ).

Depending on whether the optimization 
problem is maximization or minimization.



Decision reduces to optimization

• The decision problem is no harder than the optimization problem.

Given the value of the optimal solution, simply check whether it is .



Optimization reduces to decision

We can use an algorithm for the decision problem to do 
a binary search for the value of the optimal solution.

in a different sense!



Optimization reduces to decision

• The decision problem can be solved in polynomial time if and only if 
the optimization problem can be solved in polynomial time.

We can use an algorithm for the decision problem to do 
a binary search for the value of the optimal solution.

in a different sense!

We can focus on decision problems.



Karp reduction

• Given two decision problems and , a polynomial-time reduction
from to , denoted , is defined as follows.

A transformation from instances of to instances of satisfying the two conditions:
• is a YES-instance for if and only if is a YES-instance for .
• The transformation takes polynomial time in the size of .

Richard Karp



Question 2 @ VisuAlgo online quiz

Suppose that . 
Which of the following statements is true?

a) If can be solved in polynomial time, then so can .
b) If can be solved in polynomial time, then cannot be solved in 

polynomial time.
c) If cannot be solved in polynomial time, then neither can .
d) If cannot be solved in polynomial time, then can be solved in 

polynomial time.



Vertex cover

Definition: For an undirected graph , a subset is a 
vertex cover if every edge is covered by .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc



Vertex cover

Definition: For an undirected graph , a subset is a 
vertex cover if every edge is covered by .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

is not a vertex cover because 
and are not covered. 



Vertex cover

Definition: For an undirected graph , a subset is a 
vertex cover if every edge is covered by .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

is a vertex cover because all 
edges are covered. 



Vertex cover

Definition: For an undirected graph , a subset is a 
vertex cover if every edge is covered by .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Optimization version: 
• Compute the size of a minimum vertex cover.
Decision version: 
• Decide if there is a vertex cover of size .

smallest cardinality



Independent set

Definition: For an undirected graph , a subset is an 
independent set if for every and , we have .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc



Independent set

Definition: For an undirected graph , a subset is an 
independent set if for every and , we have .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

is not an independent set 
because . 



Independent set

Definition: For an undirected graph , a subset is an 
independent set if for every and , we have .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

is an independent set.

Is it a largest one?



Independent set

Definition: For an undirected graph , a subset is an 
independent set if for every and , we have .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

is a maximum independent set.

There can be more than one maximum independent set.



Independent set

Definition: For an undirected graph , a subset is an 
independent set if for every and , we have .

VisuAlgo (vertex cover): https://visualgo.net/en/mvc

Optimization version: 
• Compute the size of a maximum independent set.
Decision version: 
• Decide if there is an independent set of size .



VC vs. IS

Input: A graph and a positive integer .
Goal: Decide if there is a vertex cover of size .

Input: A graph and a positive integer .
Goal: Decide if there is an independent set of size .

VC: Vertex Cover

IS: Independent Set

Can you see a relation?



VC vs. IS

Input: A graph and a positive integer .
Goal: Decide if there is a vertex cover of size .

Input: A graph and a positive integer .
Goal: Decide if there is an independent set of size .

VC: Vertex Cover

IS: Independent Set

Claim: is a vertex cover if and only if is an independent set. 

Can you see a relation?



VC vs. IS

• Consider any and .
• We just need to show that .

Claim: is a vertex cover if and only if is an independent set. 

Proof (): If is a vertex cover, 
then is an independent set. 



VC vs. IS

• Consider any and .
• We just need to show that .

Claim: is a vertex cover if and only if is an independent set. 

Proof (): If is a vertex cover, 
then is an independent set. 

If , then is an edge not 
covered by , which is impossible. 



VC vs. IS

• Consider any .
• We just need to show that is 

covered by , meaning that at least 
one of and is in . 

Claim: is a vertex cover if and only if is an independent set. 

Proof (): If is an independent 
set, then is a vertex cover. 



VC vs. IS

• Consider any .
• We just need to show that is 

covered by , meaning that at least 
one of and is in . 

Claim: is a vertex cover if and only if is an independent set. 

Proof (): If is an independent 
set, then is a vertex cover. 

If both and are not in , then 
is not an independent set. 



VC vs. IS

Proof:
• Consider the transformation: .
• The transformation can be done in polynomial time.
• Just need to show that is a YES-instance if and only if is a YES-instance.

Claim: is a vertex cover if and only if is an independent set. 

VC 𝑷 IS

An instance for VC An instance for IS
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• Consider the transformation: .
• The transformation can be done in polynomial time.
• Just need to show that is a YES-instance if and only if is a YES-instance.

Claim: is a vertex cover if and only if is an independent set. 

VC 𝑷 IS

An instance for VC An instance for IS



VC vs. IS

Proof:
• Consider the transformation: .
• The transformation can be done in polynomial time.
• Just need to show that is a YES-instance if and only if is a YES-instance.

Claim: is a vertex cover if and only if is an independent set. 

VC 𝑷 IS

An instance for VC An instance for IS

has a vertex cover 
of size . 

is a YES-instance for VC

has an independent set 
of size . 

is a YES-instance for IS

if and only if 



VC vs. IS Claim: is a vertex cover if and only if is an independent set. 

VC 𝑷 IS The proof is similar.IS 𝑷 VC✓



Looking forward

• In the next week, we will see that there are many problems admitting 
polynomial-time reductions to and from VC and IS. 

If any one of these problems can 
be solved in polynomial time, 
then all these problems can be 
solved in polynomial time.

Richard Karp (1972) “Reducibility Among Combinatorial Problems”
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