CS3230 — Design and Analysis of Algorithms
(S1 AY2024/25)

Special lecture: Preview of CS5330 — Randomized Algorithms

Why randomness?

* There are many scenarios where randomness is extremely useful.

Why randomness?

* There are many scenarios where randomness is extremely useful.

|

[Sublinear, parallel, and distributed computing]

[Overcoming known lower bounds for deterministic algorithms]

Example 1: communication protocols

* Equality testing:
* Alice holds a large n-bit string S4.
* Bob holds a large n-bit string Sg.

* Goal:
* Alice and Bob want to decide whether S, = Sp.

* Example:

» After downloading a large file, you want to be sure that
the file downloaded is correct.

Example 1: communication protocols

* Equality testing:
* Alice holds a large n-bit string S4.
* Bob holds a large n-bit string Sg.

Deterministic algorithm:

* Goal: * Any deterministic algorithm requires
* Alice and Bob want to decide whether S, = S;. Q. (n) bits of communication.
* Example:

» After downloading a large file, you want to be sure that
the file downloaded is correct.

Randomized algorithm:
* With randomness, there is a communication protocol that
only sends O (logn) bits, with success probability 0.99.

Example 2: sampling

* Given a long list of numbers, estimate its average value.
* Example: How many friends does a Facebook user have on average?

Example 2: sampling

* Given a long list of numbers, estimate its average value.
* Example: How many friends does a Facebook user have on average?

-
Deterministic algorithm:
* Requires seeing the entire input.

-
Randomized algorithm:
 Sampling a subset of input and calculating its average.

k. The larger the sample size, the more accurate the estimate is.

Example 2: sampling

* Given a long list of numbers, estimate its average value.
* Example: How many friends does a Facebook user have on average?

-
Deterministic algorithm:
* Requires seeing the entire input.

-
Randomized algorithm:
 Sampling a subset of input and calculating its average.

k. The larger the sample size, the more accurate the estimate is.

Randomness is extremely useful in designing sublinear-time algorithms
for approximately learning a property of a massive data set.

Two selected topics

* Concentration inequalities. Show that X is close to its expectation [E[X] with high probability.

* Derandomization. Turning a randomized algorithm into a deterministic algorithm.

Two selected topics

* Concentration inequalities.
* Derandomization.

Programming assignment 2:
* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
* What is the probability that the number of guesses is at most 2.45 - n?

Two selected topics

* Concentration inequalities.
* Derandomization. E[X]=225-n

Programming assignment 2: l
* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
* What is the probability that the number of guesses is at most 2.45 - n?

X

Markov inequality: Pr[X >a- IE[X]] S%

Two selected topics

* Concentration inequalities.
* Derandomization. E[X]=225-n

Programming assignment 2: l
* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
* What is the probability that the number of guesses is at most 2.45 - n?

X
Markov inequality: Pr[X >a- IE[X]] S%
The success probability is too small.
2.45 2.25
Pr[X > 2.45-n]=Pr|X = o5 E[X]| < Wi = 0.9183 ... » Pr[X <2.45-n] >0.0816...

Two selected topics

e Concentration inequalities.

o Derandomization. Can we solve these problems deterministically?

Tutorial 5:
* Anygraph G = (V, E) admits a cut of size of at least |E|/2.
* Such a cut can be computed in expectation.

Two selected topics

e Concentration inequalities.

o Derandomization. Can we solve these problems deterministically?

Tutorial 5:
* Anygraph G = (V, E) admits a cut of size of at least |E|/2.
* Such a cut can be computed in expectation.

(Midterm exam:
* LetG = (V,E) be any n-vertex bipartite graph where each vertex v is associated
with a list L(v) of [log, n] + 1 colors.

\° A proper coloring can be computed with probability 1/2.

~

Recap

* Markov inequality:
 If X is a non-negative random variable and a > 0, then

PrX > a-E[X]] <.

[The tail bound obtained by Markov inequality is only linear in a‘l.]

Can we improve this?

Chebyshev inequality

e Variance:
 Var[X] = E[(X — E[X])?].

Chebyshev inequality

* Variance: 1
 Var[X] = E[(X — E[X])?]. Pr{X > a - E[X]] <~
* As (X — E[X])? = 0, we may apply Markov inequality to (X — E[X])*:

Pr[(X — E[X])? = a- E[(X — E[X])?]] <

QIr

Chebyshev inequality

* Variance: 1
« Var[X] = E[(X — E[X])?]. Pr{X > a - E[X]] <~
* As (X — E[X])? = 0, we may apply Markov inequality to (X — E[X])*:

Pr[(X — E[X])? = a- E[(X — E[X])?]] <

|

Chebyshev inequality:
Pr[lX—IE[X]I >p- Var[X]] <L | b=ya

b2
« Pr[IX —E[X]| >] < 22X
I\ J

QIr

Chebyshev inequality

e \VVariance:

 Var[X] = E[(X — E[X])?].
* As (X — E[X]? = 0, we may apply Markov inequality to (X — E[X])?:

|

Pr[(X — E[X])? = a- E[(X — E[X])?]] <

Chebyshev inequality:

« PrIX-E[X]l=c] <
N

Pr||X — E[X]| 2 b /Var[X]| <

Var[X]
cz

b2

J

Pr[X = a-E[X]] < %

QIr

An improvement over Markov inequality

The tail bound obtained by
Chebyshev inequality is quadratic.
b=+a

|

Application

E[X] = 2.25-n

Programming assignment 2: l
* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
 What is the probability that the number of guesses is at most 2.45 - n?

X

Application

X; = number of guesses in iteration i.

. PriX; =1] =
« Pr[X;=2]=
« Pr[X;=3]=
. E[X;] = 2.25
n
X = in
i=1

1

N R [R

E[X] = 2.25-n

Programming assignment 2: l

* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
 What is the probability that the number of guesses is at most 2.45 - n?

X

Application

X; = number of guesses in iteration i.

. PrlX;=1] =
 Pr[X;=2] =
 PrlX; =3] =
. E[X;] = 2.25

. Var[X;] = i (1—2.25)%+ % (2 —2.25)% + % (3 — 2.25)2 = 0.6875

1

N R [R

E[X] = 2.25-n

Programming assignment 2:
* There is a randomized guessing strategy using 2.25 - n guesses in expectation.

l

 What is the probability that the number of guesses is at most 2.45 - n?

Application

X; = number of guesses in iteration i.

Pr(X; = 1] =
Pr[X; =2] =
Pr[X; =3] =
E[X;] = 2.25

Var[X;] = i (1—2.25)%+ i (2 —2.25)% + % (3 — 2.25)% = 0.6875

1

N R [R

n
Var[X] = Z Var[X;] = 0.6875 - n
\ i=1

X1, X5, ... X, are independent.

E[X] = 2.25-n

Programming assignment 2:

* There is a randomized guessing strategy using 2.25 - n guesses in expectation.
 What is the probability that the number of guesses is at most 2.45 - n?

l

X

Application

n
Var[X] = Z Var[X;] = 0.6875 - n
i=1

Chebyshev inequality:
e Prl[|I X —E[X]| =] <

Var[X]

Var[X] 17.1875

Pr[X22.45-n]SPr[IX—IE[X]IZO.Z-n]S(OZ.n)Z— n E[X] = 2.25-n
" — 1
Programming assignment 2:
X = 2 Xi * There is a randomized guessing strategy using 2.25 - n guesses in expectation.
i=1 What is the probability that the number of guesses is at most 2.45 - n?

X

Application

If n is large, then with a very high probability,
the number of guesses is at most 2.45 - n.

n
Var[X] = Z Var[X;] = 0.6875 - n
i=1

Chebyshev inequality:

e Pr[lX — E[X]| = ¢] <X

Var[X] 17.1875 1
Pr[X > 2.45-n] < Pr[|X — E[X]| = 0.2 - = €0

< =
n] < (0.2 - n)? n n [E[X] =225n
n . . l
Programming assignment 2:
X = 2 X * There is a randomized guessing strategy using 2.25 - n guesses in expectation.
i=1 What is the probability that the number of guesses is at most 2.45 - n?

X

Application

If n is large, then with a very high probability,
the number of guesses is at most 2.45 - n.

Chebyshev inequality:
e Prl[|I X —E[X]| =] <

Var[X]

Pr[X > 2.45-n] < Pr[|X — E[X]| = 0.2 -

Var[X] 17.1875 <1>
= €0

n] < (02-n)2 n n

s it possible to get an even better bound?

Higher moments

* It is possible to extend Chebyshev inequality to higher moments.

Pr[|X — E[X]| = a] = Pr[|X — E[X]|* > a*] < ELIX _aIkE[X]lk] J

If X is non—-negative, then Pr [X >a- ([E[Xk])l/k] = Pr [Xk > gk . IE[Xk]] < a—lk]

.

Higher moments

* It is possible to extend Chebyshev inequality to higher moments.

Pr[|X — E[X]| = a] = Pr[|X — E[X]|* = a*] < o

' E[|X — E[X]|¥] }

7

If X is non—-negative, then Pr [X >a- ([E[Xk])l/k] = Pr [Xk > gk . IE[X"]] < a—lk]

.

With these concentration inequalities, we should be able to get an improved bound:

1
Pr[X > 2.45-n] € 0(k_1>
n

Disclaimer: | am confident this will work, though | have not personally done the calculations.

Further improvements

* What is the limit of this approach?

Further improvements

* What is the limit of this approach?

/Hoeffding inequality: \

« X =Y",X;, where Xy, X, ..., X,, are independent random variables taking values in [a;, b;].

PriX < E[X] —t] <e Zi=a®imad®,
2t2
K Pr[X > E[X] + t] <e Zi=1®i®?, /

Further improvements

The probability that the number of guesses exceeds 2.45 - n is exponentially small.

_2(0.2:n)? n
Pr[X >2.45-n] <Pr[X = E[X]+ 02 -n]<e Ziz12® =¢750

|

/Hoeffding inequality: \

« X =Y",X;, where Xy, X, ..., X,, are independent random variables taking values in [a;, b;].

e Pr[X <E[X]-t] <e Ziz1®ima?,
2t2
K Pr[X > E[X] + t] <e Zi=1®i®?, /

Tutorial 5:

De 'ad ndom |Zat|Oﬂ « Anygraph G = (V, E) admits a cut of size of at least |E|/2.

* Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Tutorial 5:
* Anygraph G = (V, E) admits a cut of size of at least |E|/2.

Derandomization

* Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Recall: A randomized algorithm and its analysis.

~

[Random partition:
e V={vy,v, .., v}
e Compute a partition V = V; UV, randomly:
* x; € {1, 2} is the outcome of a fair coin flip.
e v, eV ifx; =1.
Vi € VZ ifxl- = 2.
C—=

nalysis:

N
(a

that e crosses I/; and /5.
* X =Y .cp X, is the size of the cut.

_

1

E[X] = IIEz[z:eeEXe] = ZeeEIE[Xe] = ZeeEz =

AN

X, = the indicator random variable for the event

E|
2

Tutorial 5:
* Anygraph G = (V, E) admits a cut of size of at least |E|/2.

Derandomization

* Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Derandomization:
Set the random variables x4, x5, ..., X,, one by one
deterministically to maximize the conditional expectation.

E[X] = Pr[x; = 1] - E[X|x; = 1] + Pr[x; = 2] - E[X]|x; = 2]

[Random partition:

~

V ={vy,v,, ..., }
Compute a partition V. = V; U I/; randomly:
* x; € {1, 2} is the outcome of a fair coin flip.
e v, eV ifx; =1.
Vi € VZ ifxl- = 2.

-

AN

X, = the indicator random variable for the event
that e crosses I/; and V.
X = Y..eg X, is the size of the cut.

1

E[X] = IIE:[ZeEEXe] = ZeeEIE[Xe] = ZeeEz =

E|
2

The method of conditional expectations

E[X] = Pr[x; = 1] - E[X]|x; = 1] + Pr[x; = 2] - E[X|x; = 2]

|

At least one of the following holds: Fix x; = a4, and then repeat the
« E[X] < E[X|x; = 1] process to fix the rest of the variables

o+ E[X] < E[X|x; = 2]

|

Choose a; € {1,2} to maximize E[X]|x; = a4]

E[X] < E[X|x; = a4]

The method of conditional expectations

E[X] = Pr[x; = 1] - E[X|x; = 1] + Pr[x; = 2] - E[X|x; = 2]

|

At least one of the following holds: Fix x; = a4, and then repeat the
« E[X] < E[X|x, =1] process to fix the rest of the variables

o« E[X] < E[X|x; = 2]

l Can be computed in polynomial time.

Choose a; € {1, 2} to maximize E[X|x; = a;] — E[X] < E[X]|x; = a4]

The method of conditional expectations

< E[X|x; = a4]
< E[X|x; = a;,x, = a,]

X|x; =aq,xy = ay,x3 = as] Fix x; = a4, and then repeat the
process to fix the rest of the variables

<]E:X X1 =041, ..., Xpn = an]
\ J
|
|E]

A cut with size > - is
computed deterministically. [E[X] = [E[Xlxl = al]

Graph coloring

Can we find this coloring deterministically?

Midterm exam: A
 LetG = (V,E) be any n-vertex bipartite graph where each vertex v is associated
with a list L(v) of [log, n] + 1 colors.
\' A proper coloring can be computed with probability 1/2.)

Graph coloring

Can we find this coloring deterministically?

Midterm exam: A
 LetG = (V,E) be any n-vertex bipartite graph where each vertex v is associated
with a list L(v) of [log, n] + 1 colors.
\' A proper coloring can be computed with probability 1/2.)

Randomized algorithm:
* Assign each color to one of the two parts randomly.
* The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.

Graph coloring

Can we find this coloring deterministically?

Midterm exam: A
 LetG = (V,E) be any n-vertex bipartite graph where each vertex v is associated
with a list L(v) of [log, n] + 1 colors.
\' A proper coloring can be computed with probability 1/2.)

Randomized algorithm:
* Assign each color to one of the two parts randomly.
* The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.

» X, = the indicator random variable for the bad event that all colors in L(v) are assigned to the opposite side.
* The algorithm is successful if X = Y,,c, X, < 1.

Graph coloring

Can we find this coloring deterministically?

Midterm exam: A
 LetG = (V,E) be any n-vertex bipartite graph where each vertex v is associated
with a list L(v) of [log, n] + 1 colors.
\° A proper coloring can be computed with probability 1/2.)

Randomized algorithm:
* Assign each color to one of the two parts randomly.
* The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.

» X, = the indicator random variable for the bad event that all colors in L(v) are assigned to the opposite side.
* The algorithm is successful if X = Y,,c, X, < 1.

- E[X]=-. I

2

Use the method of conditional expectations to find an
allocation of the colors such that X < E[X] = % < 1.

summary

* Many randomized algorithms can be derandomized:

[Deterministic greedy algorithm that sets the variables sequentially to optimize the conditional expectation.]

|

In many cases, it is difficult to obtain such a
greedy algorithm from scratch without first
designing a randomized algorithm.

Ssummary

* Many randomized algorithms can be derandomized:

For some problems, we still do not know how to derandomize existing randomized algorithms.
https://en.wikipedia.org/wiki/Polynomial identity testing

