CS3230 – Design and Analysis of Algorithms (S1 AY2024/25)

Special lecture: Preview of CS5330 – Randomized Algorithms

Why randomness?

• There are many scenarios where randomness is extremely useful.

Why randomness?

• There are many scenarios where randomness is extremely useful.

Sublinear, parallel, and distributed computing

Overcoming known lower bounds for deterministic algorithms

Example 1: communication protocols

• Equality testing:

- Alice holds a large n-bit string S_A .
- Bob holds a large n-bit string S_B .

Goal:

• Alice and Bob want to decide whether $S_A = S_B$.

• Example:

• After downloading a large file, you want to be sure that the file downloaded is correct.

Example 1: communication protocols

Equality testing:

- Alice holds a large n-bit string S_A .
- Bob holds a large n-bit string S_B .

Goal:

• Alice and Bob want to decide whether $S_A = S_B$.

• Example:

 After downloading a large file, you want to be sure that the file downloaded is correct.

Deterministic algorithm:

• Any deterministic algorithm requires $\Omega(n)$ bits of communication.

Randomized algorithm:

• With randomness, there is a communication protocol that only sends $O(\log n)$ bits, with success probability 0.99.

Example 2: sampling

- Given a long list of numbers, estimate its average value.
 - Example: How many friends does a Facebook user have on average?

Example 2: sampling

- Given a long list of numbers, estimate its average value.
 - Example: How many friends does a Facebook user have on average?

Deterministic algorithm:

• Requires seeing the entire input.

Randomized algorithm:

- Sampling a subset of input and calculating its average.
- The larger the sample size, the more accurate the estimate is.

Example 2: sampling

- Given a long list of numbers, estimate its average value.
 - Example: How many friends does a Facebook user have on average?

Deterministic algorithm:

• Requires seeing the entire input.

Randomized algorithm:

- Sampling a subset of input and calculating its average.
- The larger the sample size, the more accurate the estimate is.

Randomness is <u>extremely useful</u> in designing **sublinear-time algorithms** for approximately learning a property of a massive data set.

- Concentration inequalities.
- Show that X is close to its expectation $\mathbb{E}[X]$ with high probability.

• Derandomization.

Turning a randomized algorithm into a deterministic algorithm.

- Concentration inequalities.
- Derandomization.

Programming assignment 2:

- There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.
- What is the probability that the number of guesses is at most $2.45 \cdot n$?

- Concentration inequalities.
- Derandomization.

$$\mathbb{E}[X] = 2.25 \cdot n$$

Programming assignment 2:

- There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.
- What is the probability that the number of guesses is at most $2.45 \cdot n$?

X

Markov inequality: $\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$

- Concentration inequalities.
- Derandomization.

$$\mathbb{E}[X] = 2.25 \cdot n$$

Programming assignment 2:

- There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.
- What is the probability that the number of guesses is at most $2.45 \cdot n$?

Markov inequality: $\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$

The success probability is **too small**.

$$\Pr[X \ge 2.45 \cdot n] = \Pr\left[X \ge \frac{2.45}{2.25} \cdot \mathbb{E}[X]\right] \le \frac{2.25}{2.45} = 0.9183 \dots$$
 $\Pr[X \le 2.45 \cdot n] \ge 0.0816 \dots$

- Concentration inequalities.
- Derandomization. Can we solve these problems deterministically?

Tutorial 5:

- Any graph G = (V, E) admits a cut of size of at least |E|/2.
- Such a cut can be computed in expectation.

- Concentration inequalities.
- Derandomization. Can we solve these problems deterministically?

Tutorial 5:

- Any graph G = (V, E) admits a cut of size of at least |E|/2.
- Such a cut can be computed in expectation.

Midterm exam:

- Let G = (V, E) be any n-vertex bipartite graph where each vertex v is associated with a list L(v) of $\lceil \log_2 n \rceil + 1$ colors.
- A proper coloring can be computed with probability 1/2.

Recap

Markov inequality:

• If X is a non-negative random variable and $\alpha>0$, then

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$$
.

The tail bound obtained by Markov inequality is only **linear** in a^{-1} .

Can we improve this?

- Variance:
 - $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2].$

Variance:

- $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2].$ $Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$
- As $(X \mathbb{E}[X])^2 \ge 0$, we may apply Markov inequality to $(X \mathbb{E}[X])^2$:

$$\Pr[(X - \mathbb{E}[X])^2 \ge a \cdot \mathbb{E}[(X - \mathbb{E}[X])^2]] \le \frac{1}{a}.$$

Variance:

- $\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$ • $Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$
- As $(X \mathbb{E}[X])^2 \ge 0$, we may apply Markov inequality to $(X \mathbb{E}[X])^2$:

$$\Pr[(X - \mathbb{E}[X])^2 \ge a \cdot \mathbb{E}[(X - \mathbb{E}[X])^2]] \le \frac{1}{a}.$$

Chebyshev inequality:

- $\Pr[|X \mathbb{E}[X]| \ge b \cdot \sqrt{\operatorname{Var}[X]}] \le \frac{1}{b^2}$. $b = \sqrt{a}$ $\Pr[|X \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$. $c = b \cdot \sqrt{\operatorname{Var}[X]}$

$$b = \sqrt{a}$$

$$c = b \cdot \sqrt{\operatorname{Var}[X]}$$

Variance:

•
$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

$$\Pr[X \ge a \cdot \mathbb{E}[X]] \le \frac{1}{a}$$

• As $(X - \mathbb{E}[X])^2 \ge 0$, we may apply Markov inequality to $(X - \mathbb{E}[X])^2$:

$$\Pr[(X - \mathbb{E}[X])^2 \ge a \cdot \mathbb{E}[(X - \mathbb{E}[X])^2]] \le \frac{1}{a}.$$

An improvement over Markov inequality

Chebyshev inequality:

- $\Pr[|X \mathbb{E}[X]| \ge b \cdot \sqrt{\operatorname{Var}[X]}] \le \frac{1}{b^2}$. $\Pr[|X \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$. $b = \sqrt{a}$ $c = b \cdot \sqrt{\operatorname{Var}[X]}$

The tail bound obtained by Chebyshev inequality is quadratic.

$$b = \sqrt{a}$$

$$c = b \cdot \sqrt{\operatorname{Var}[X]}$$

$$\mathbb{E}[X] = 2.25 \cdot n$$

Programming assignment 2:

- There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.
- What is the probability that the number of guesses is at most $2.45 \cdot n$?

 X_i = number of guesses in iteration i.

•
$$\Pr[X_i = 1] = \frac{1}{4}$$

•
$$Pr[X_i = 2] = \frac{1}{4}$$

• $Pr[X_i = 3] = \frac{1}{2}$

•
$$\Pr[X_i = 3] = \frac{1}{2}$$

•
$$\mathbb{E}[X_i] = 2.25$$

$$\mathbb{E}[X] = 2.25 \cdot n$$

$$X = \sum_{i=1}^{n} X_i$$

Programming assignment 2:

• There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.

X

What is the probability that the number of guesses is at most $2.45 \cdot n$?

 X_i = number of guesses in iteration i.

•
$$\Pr[X_i = 1] = \frac{1}{4}$$

•
$$\Pr[X_i = 2] = \frac{1}{4}$$

•
$$Pr[X_i = 3] = \frac{1}{2}$$

•
$$\mathbb{E}[X_i] = 2.25$$

•
$$Var[X_i] = \frac{1}{4} \cdot (1 - 2.25)^2 + \frac{1}{4} \cdot (2 - 2.25)^2 + \frac{1}{2} \cdot (3 - 2.25)^2 = 0.6875$$

$$\mathbb{E}[X] = 2.25 \cdot n$$

$$X = \sum_{i=1}^{n} X_i$$

Programming assignment 2:

• There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.

X

• What is the probability that the number of guesses is at most $2.45 \cdot n$?

 X_i = number of guesses in iteration i.

•
$$Pr[X_i = 1] = \frac{1}{4}$$

•
$$\Pr[X_i = 2] = \frac{1}{4}$$

•
$$Pr[X_i = 3] = \frac{1}{2}$$

• $\mathbb{E}[X_i] = 2.25$

•
$$\mathbb{E}[X_i] = 2.25$$

 $\mathbb{E}[X] = 2.25 \cdot n$ • $Var[X_i] = \frac{1}{4} \cdot (1 - 2.25)^2 + \frac{1}{4} \cdot (2 - 2.25)^2 + \frac{1}{2} \cdot (3 - 2.25)^2 = 0.6875$

 $X_1, X_2, \dots X_n$ are independent.

$$X = \sum_{i=1}^{n} X_i$$
 Programming assignment 2:
• There is a randomized guessing strategy

• There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.

X

 $Var[X] = \sum_{i=1}^{n} Var[X_i] = 0.6875 \cdot n$

What is the probability that the number of guesses is at most $2.45 \cdot n$?

$$Var[X] = \sum_{i=1}^{n} Var[X_i] = 0.6875 \cdot n$$

Chebyshev inequality:

•
$$\Pr[|X - \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$$
.

$$\Pr[X \ge 2.45 \cdot n] \le \Pr[|X - \mathbb{E}[X]| \ge 0.2 \cdot n] \le \frac{\operatorname{Var}[X]}{(0.2 \cdot n)^2} = \frac{17.1875}{n}$$

$$\mathbb{E}[X] = 2.25 \cdot n$$

$$X = \sum_{i=1}^{n} X_i$$

Programming assignment 2:

• There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.

X

• What is the probability that the number of guesses is at most $2.45 \cdot n$?

If n is large, then with a very high probability, the number of guesses is at most $2.45 \cdot n$.

$$Var[X] = \sum_{i=1}^{n} Var[X_i] = 0.6875 \cdot n$$

Chebyshev inequality:

•
$$\Pr[|X - \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$$
.

$$\Pr[X \ge 2.45 \cdot n] \le \Pr[|X - \mathbb{E}[X]| \ge 0.2 \cdot n] \le \frac{\operatorname{Var}[X]}{(0.2 \cdot n)^2} = \frac{17.1875}{n} \in O\left(\frac{1}{n}\right)$$

$$\mathbb{E}[X] = 2.25 \cdot n$$

$$X = \sum_{i=1}^{n} X_i$$

Programming assignment 2:

• There is a randomized guessing strategy using $2.25 \cdot n$ guesses in expectation.

X

• What is the probability that the number of guesses is at most $2.45 \cdot n$?

If n is large, then with a very high probability, the number of guesses is at most $2.45 \cdot n$.

Chebyshev inequality:

• $\Pr[|X - \mathbb{E}[X]| \ge c] \le \frac{\operatorname{Var}[X]}{c^2}$.

$$\Pr[X \ge 2.45 \cdot n] \le \Pr[|X - \mathbb{E}[X]| \ge 0.2 \cdot n] \le \frac{\operatorname{Var}[X]}{(0.2 \cdot n)^2} = \frac{17.1875}{n} \in O\left(\frac{1}{n}\right)$$

Is it possible to get an even better bound?

Higher moments

• It is possible to extend Chebyshev inequality to higher moments.

$$\Pr[|X - \mathbb{E}[X]| \ge a] = \Pr[|X - \mathbb{E}[X]|^k \ge a^k] \le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^k]}{a^k}.$$

If
$$X$$
 is non-negative, then $\Pr\left[X \geq a \cdot \left(\mathbb{E}[X^k]\right)^{1/k}\right] = \Pr\left[X^k \geq a^k \cdot \mathbb{E}[X^k]\right] \leq \frac{1}{a^k}$.

Higher moments

It is possible to extend Chebyshev inequality to higher moments.

$$\Pr[|X - \mathbb{E}[X]| \ge a] = \Pr[|X - \mathbb{E}[X]|^k \ge a^k] \le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^k]}{a^k}.$$

If
$$X$$
 is non-negative, then $\Pr\left[X \geq a \cdot \left(\mathbb{E}[X^k]\right)^{1/k}\right] = \Pr\left[X^k \geq a^k \cdot \mathbb{E}[X^k]\right] \leq \frac{1}{a^k}$.

With these concentration inequalities, we should be able to get an **improved bound**:

$$\Pr[X \ge 2.45 \cdot n] \in O\left(\frac{1}{n^{k-1}}\right)$$

Disclaimer: I am confident this will work, though I have not personally done the calculations.

Further improvements

• What is the limit of this approach?

Further improvements

What is the limit of this approach?

Hoeffding inequality:

- $X = \sum_{i=1}^{n} X_i$, where $X_1, X_2, ..., X_n$ are independent random variables taking values in $[a_i, b_i]$.
- $\Pr[X \le \mathbb{E}[X] t] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i a_i)^2}}$. $\Pr[X \ge \mathbb{E}[X] + t] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i a_i)^2}}$.

Further improvements

The probability that the number of guesses exceeds $2.45 \cdot n$ is exponentially small.

$$\Pr[X \ge 2.45 \cdot n] \le \Pr[X \ge \mathbb{E}[X] + 0.2 \cdot n] \le e^{-\frac{2(0.2 \cdot n)^2}{\sum_{i=1}^n 2^2}} = e^{-\frac{n}{50}}$$

Hoeffding inequality:

- $X = \sum_{i=1}^{n} X_i$, where $X_1, X_2, ..., X_n$ are independent random variables taking values in $[a_i, b_i]$.
- $\Pr[X \le \mathbb{E}[X] t] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i a_i)^2}}$. $\Pr[X \ge \mathbb{E}[X] + t] \le e^{-\frac{2t^2}{\sum_{i=1}^{n} (b_i a_i)^2}}$.

Derandomization

Tutorial 5:

- Any graph G = (V, E) admits a cut of size of at least |E|/2.
- Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Derandomization

Tutorial 5:

- Any graph G = (V, E) admits a cut of size of at least |E|/2.
- Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Random partition:

- $V = \{v_1, v_2, \dots, v_n\}.$
- Compute a partition $V = V_1 \cup V_2$ randomly:
 - $x_i \in \{1, 2\}$ is the outcome of a fair coin flip.
 - $v_i \in V_1 \text{ if } x_i = 1.$
 - $v_i \in V_2$ if $x_i = 2$.

Recall: A randomized algorithm and its analysis.

Analysis:

- X_e = the indicator random variable for the event that e crosses V_1 and V_2 .
- $X = \sum_{e \in E} X_e$ is the size of the cut.
- $\mathbb{E}[X] = \mathbb{E}[\sum_{e \in E} X_e] = \sum_{e \in E} \mathbb{E}[X_e] = \sum_{e \in E} \frac{1}{2} = \frac{|E|}{2}$

Derandomization

Tutorial 5:

- Any graph G = (V, E) admits a cut of size of at least |E|/2.
- Such a cut can be computed in expectation.

Can we obtain such a cut deterministically?

Derandomization:

Set the random variables $x_1, x_2, ..., x_n$ one by one deterministically to maximize the conditional expectation.

$$\mathbb{E}[X] = \Pr[x_1 = 1] \cdot \mathbb{E}[X|x_1 = 1] + \Pr[x_1 = 2] \cdot \mathbb{E}[X|x_1 = 2]$$

Random partition:

- $V = \{v_1, v_2, ..., v_n\}.$
- Compute a partition $V = V_1 \cup V_2$ randomly:
 - $x_i \in \{1, 2\}$ is the outcome of a fair coin flip.
 - $v_i \in V_1 \text{ if } x_i = 1.$
 - $v_i \in V_2 \text{ if } x_i = 2.$

Analysis:

- X_e = the indicator random variable for the event that e crosses V_1 and V_2 .
- $X = \sum_{e \in E} X_e$ is the size of the cut.
- $\mathbb{E}[X] = \mathbb{E}[\sum_{e \in E} X_e] = \sum_{e \in E} \mathbb{E}[X_e] = \sum_{e \in E} \frac{1}{2} = \frac{|E|}{2}$

The method of conditional expectations

$$\mathbb{E}[X] = \Pr[x_1 = 1] \cdot \mathbb{E}[X|x_1 = 1] + \Pr[x_1 = 2] \cdot \mathbb{E}[X|x_1 = 2]$$

At least one of the following holds:

- $\mathbb{E}[X] \leq \mathbb{E}[X|x_1 = 1]$
- $\mathbb{E}[X] \leq \mathbb{E}[X|x_1=2]$

Fix $x_1 = a_1$, and then repeat the process to fix the rest of the variables

Choose
$$a_1 \in \{1, 2\}$$
 to maximize $\mathbb{E}[X|x_1 = a_1] \longrightarrow \mathbb{E}[X] \leq \mathbb{E}[X|x_1 = a_1]$

The method of conditional expectations

$$\mathbb{E}[X] = \Pr[x_1 = 1] \cdot \mathbb{E}[X|x_1 = 1] + \Pr[x_1 = 2] \cdot \mathbb{E}[X|x_1 = 2]$$

At least one of the following holds:

- $\mathbb{E}[X] \leq \mathbb{E}[X|x_1 = 1]$
- $\mathbb{E}[X] \leq \mathbb{E}[X|x_1 = 2]$

Can be computed in polynomial time.

Fix $x_1 = a_1$, and then repeat the process to fix the rest of the variables

Choose
$$a_1 \in \{1, 2\}$$
 to maximize $\mathbb{E}[X|x_1 = a_1] \longrightarrow \mathbb{E}[X] \leq \mathbb{E}[X|x_1 = a_1]$

The method of conditional expectations

$$\begin{split} \frac{|E|}{2} &\leq \mathbb{E}[X] \\ &\leq \mathbb{E}[X|x_1 = a_1] \\ &\leq \mathbb{E}[X|x_1 = a_1 \text{, } x_2 = a_2] \\ &\leq \mathbb{E}[X|x_1 = a_1 \text{, } x_2 = a_2, x_3 = a_3] \\ & \cdots \\ &\leq \mathbb{E}[X|x_1 = a_1 \text{, } \dots, x_n = a_n] \end{split}$$
 A cut with size $\geq \frac{|E|}{2}$ is computed deterministically.

Fix $x_1 = a_1$, and then repeat the process to fix the rest of the variables

$$\mathbb{E}[X] \le \mathbb{E}[X|x_1 = a_1]$$

Can we find this coloring deterministically?

Midterm exam:

- Let G=(V,E) be any n-vertex bipartite graph where each vertex v is associated with a list L(v) of $\lceil \log_2 n \rceil + 1$ colors.
- A proper coloring can be computed with probability 1/2.

Can we find this coloring deterministically?

Midterm exam:

- Let G = (V, E) be any n-vertex bipartite graph where each vertex v is associated with a list L(v) of $\lceil \log_2 n \rceil + 1$ colors.
- A proper coloring can be computed with probability 1/2.

Randomized algorithm:

- Assign each color to one of the two parts randomly.
- The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.

Can we find this coloring deterministically?

Midterm exam:

- Let G = (V, E) be any n-vertex bipartite graph where each vertex v is associated with a list L(v) of $\lceil \log_2 n \rceil + 1$ colors.
- A proper coloring can be computed with probability 1/2.

Randomized algorithm:

- Assign each color to one of the two parts randomly.
- The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.
- $X_v =$ the indicator random variable for the **bad event** that all colors in L(v) are assigned to the opposite side.
- The algorithm is **successful** if $X = \sum_{v \in V} X_v < 1$.
- $\mathbb{E}[X] = \frac{1}{2}$.

Can we find this coloring deterministically?

Midterm exam:

- Let G = (V, E) be any n-vertex bipartite graph where each vertex v is associated with a list L(v) of $\lceil \log_2 n \rceil + 1$ colors.
- A proper coloring can be computed with probability 1/2.

Randomized algorithm:

- Assign each color to one of the two parts randomly.
- The algorithm is successful is every vertex v has a color in its list L(v) assigned to its part.
- $X_v =$ the indicator random variable for the **bad event** that all colors in L(v) are assigned to the opposite side.
- The algorithm is **successful** if $X = \sum_{v \in V} X_v < 1$.
- $\mathbb{E}[X] = \frac{1}{2}$.

Use the method of conditional expectations to find an allocation of the colors such that $X \leq \mathbb{E}[X] = \frac{1}{2} < 1$.

Summary

• Many randomized algorithms can be derandomized:

Deterministic greedy algorithm that sets the variables sequentially to optimize the conditional expectation.

Ī

In many cases, it is difficult to obtain such a greedy algorithm from scratch without first designing a randomized algorithm.

Summary

• Many randomized algorithms can be derandomized:

For some problems, we still do not know how to derandomize existing randomized algorithms. https://en.wikipedia.org/wiki/Polynomial_identity_testing