CS3230 Semester 1 2024/2025 Design and Analysis of Algorithms

Tutorial 02 Solving Recurrences and Master Theorem For Week 03

Document is last modified on: August 17, 2024

1 Lecture Review: Recurrences

Given a recurrence in standard form of $T(n) = a \cdot T(\frac{n}{b})$ $\frac{n}{b}$ $\big) + f(n)$, where $f(n) = c \cdot n^d \log^k n$, we want to give a **tight** asymptotic bound for $T(n)$.

There are a few ways to solve recurrences, with the easiest being Master theorem (a.k.a. master method). Let $d = \log_b a$ (this d is a very important value; also notice $b^d = a$).

- 1. Case 1: $f(n) \in O(n^{d-\epsilon}) \Rightarrow T(n) \in \Theta(n^d)$. The total work done at the leaves dominate.
- 2. Case 2: $f(n) \in \Theta(n^d \log^k n) \Rightarrow T(n) \in \Theta(n^d \log^{k+1} n)$. There are some extensions of case 2, to be elaborated in this tutorial.
- 3. Case 3: $f(n) \in \Omega(n^{d+\epsilon}) \Rightarrow T(n) \in \Theta(f(n)),$ assuming $a \cdot f(\frac{x}{b})$ $\frac{x}{b}$ $\leq c \cdot f(x)$, $\forall x$, and some constant $c < 1$ (regularity condition). The root does most of the work.

However, there are also three other ways to solve recurrences, especially those that are not of the standard form above: Telescoping (if applicable), substitution method (guess and check; need good guess(es)), or draw the recursion tree (try exploring <https://visualgo.net/en/recursion>).

1.1 Recap About Telescoping

Consider any sequence a_0, a_1, \ldots, a_n and suppose we need to find $\sum_{i=0}^{n-1} (a_i - a_{i+1})$. Expanding $\sum_{i=0}^{n-1} (a_i - a_{i+1})$, we have $(a_0 - a_1) + (a_1 - a_2) + (a_2 - a_3) + \ldots + (a_{n-1} - a_n)$. Which can be rewritten as $a_0 + (-a_1 + a_1) + (-a_2 + a_2) + \ldots + (-a_{n-1} + a_{n-1}) - a_n$.

Thus, except for a_0 at the beginning and $-a_n$ at the end, all other a_i appear exactly once as a negative and then as a positive in the sum, and thus cancel each other, making the $\sum_{i=0}^{n-1} (a_i - a_{i+1}) = a_0 - a_n$.

2 Tutorial 02 Questions

Q1). Give a **tight** asymptotic bound for $T(n) = 4 \cdot T(\frac{n}{4})$ $\frac{n}{4})+\frac{n}{\log n}$ using telescoping.

Q2-3-4). are hidden, they are of type:

Give a **tight** asymptotic bound for $T(n) = a \cdot T(\frac{n}{b})$ $\frac{n}{b}$ $+ f(n)$.

But we guarantee that all three can be solved (easily) with master theorem.

Q5). Give a **tight** asymptotic bound for $T(n) = 4 \cdot T(\frac{n}{2})$ $\left(\frac{n}{2}\right)+\sqrt{n}$ using the substitution method.

Q6). Suppose that you are given k sorted arrays: $\{A_1, A_2, \ldots, A_k\}$, with n elements each. Your task is to merge them into one combined sorted array of size $k \cdot n$. Let $T(k, n)$ denotes the complexity of merging k arrays of size n. Suppose that you decide that the best way to do the above is via recursion (when $k > 1$):

- 1. Merge the first $\lceil \frac{k}{2} \rceil$ $\frac{k}{2}$ arrays of size *n*,
- 2. Merge the remaining $\frac{k}{2}$ $\frac{k}{2}$ arrays of size *n*,
- 3. Merge the two sorted subarrays obtained from the first two steps above.

Give a formula for $T(k, n)$ based on the recursive algorithm above and solve the recurrence.