(CS3230 Semester 1 2024 /2025
Design and Analysis of Algorithms

Tutorial 03
Proof of Correctness and D&C (1)
For Week 04

Document is last modified on: August 17, 2024

1 Lecture Review: Proof of Correctness
We prove the correctness of an algorithm depending on its type:

e For iterative algorithm, we usually use loop invariant.
Invariant is a condition which is TRUE at the start of EVERY iteration

We can then use invariant to show the correctness:

1. Initialization: It is true before iteration 1

2. Maintenance: If it is true for iteration x, it remains true for iteration x+1

3. Termination: When the algorithm ends, it helps the proof of correctness

e For recursive algorithm, we usually use proof by induction.

1. Show the recursive algorithm is (trivially) correct on its base case(s).

2. Inductive step: show that the recursive algorithm is correct, assuming that the smaller

cases are all correct.

2 Lecture Review: D&C

Here are the usual steps for using Divide and Conquer (D&C) problem solving paradigm for problems

that are amenable to it:

1. Divide: Divide/break the original problem into > 1 smaller sub-problems.



2. Conquer: Conquer/solve the sub-problems recursively.

3. Combine (optional): Optionally, combine the sub-problem solutions to get the solution of the

original problem.
The most classic D&C example is Merge Sort.

1. Divide: Divide/break the original problem of sorting n elements into 2 smaller sub-problems of

sorting % elements.

2. Conquer: Conquer/solve the sorting of % elements recursively.

3. Combine {eptionalty: Merge 2 already sorted % elements.

3 Tutorial 03 Questions
Q1). Consider the following iterative sorting algorithm InsertionSort(A).
for i € [1..N — 1] // outer for loop ¢
1. let X be Afi] // X is the next item to be inserted into A[0..i — 1]
2. for j € [i — 1..0] (down) // inner for loop j
(a) if A[j] > X, set A[j + 1] = A[j] // make a place for X
(b) else, break
3. A[j+1] =X // insert X at index j +1
Assuming the inner for loop j is correct, answer the following two questions:
1. What is the suitable loop invariant for the outer for loop ¢7

2. Show the invariant after initialization, maintenance, and termination.

Q2). Consider the following recursive sorting algorithm StoogeSort(A).
1. Let n be the length of array A.
2. If n = 2 and the first number is larger than the second number, swap the two numbers.
3. If n > 2, do the following three steps sequentially.

(a) Apply StoogeSort to sort the initial [2n/3] numbers recursively.
(b) Apply StoogeSort to sort the final [2n/3] numbers recursively.

(c) Apply StoogeSort to sort the initial [2n/3] numbers recursively.

Answer the following three questions:



1. Prove that StoogeSort(A) correctly sorts the input array A.

For the sake of simplicity, you may assume that all numbers in A are distinct.

2. Analyze the time complexity of StoogeSort.

Q3, Q4, Q5. involves Finding a Peak Problem

You are given a 2D array of m rows and n columns.

Each cell has a number

You want to find any single peak: A cell where the number is > than all of its (up to) four
(North/East/South/West) neighbors.

For example, given m x n = 3 x 5 grid below, there are 5 peaks (denoted with a ‘*):

6 8x 7 Tx 1
9% 3 1 7% 3
8 4 5x3 2

Q3). Show that there is a peak in every 2D array!

We want to come up with a recursive algorithm to find any peak: FindPeak (A):

1. If A has only n = 1 column, then Return the maximum element in the column.
2. Otherwise (if A has n >= 2 columns),

Consider the middle column of A,

b

(a)
(b) Find a maximum element on that middle column
(c) Check if that element is a peak
(d) If yes, then Return that element

(e) Otherwise,

i. X = FindPeak(Left_Half of_A_without_the_middle_column)
ii. Y = FindPeak(Right_Half of A_without_the_middle_column)

iii. If either X or Y is a peak, Return it, else Return None // see Question Q3.

Q4). What in the runtime complexity of FindPeak(A) algorithm?

Q5). Should FindPeak(A) algorithm do both step 2.(e).i and step 2.(e).ii.?




	Lecture Review: Proof of Correctness
	Lecture Review: D&C
	Tutorial 03 Questions

