
CS3230 Semester 1 2024/2025

Design and Analysis of Algorithms

Tutorial 03

Proof of Correctness and D&C (1)

For Week 04

Document is last modified on: August 17, 2024

1 Lecture Review: Proof of Correctness

We prove the correctness of an algorithm depending on its type:

• For iterative algorithm, we usually use loop invariant.

Invariant is a condition which is TRUE at the start of EVERY iteration

We can then use invariant to show the correctness:

1. Initialization: It is true before iteration 1

2. Maintenance: If it is true for iteration x, it remains true for iteration x+1

3. Termination: When the algorithm ends, it helps the proof of correctness

• For recursive algorithm, we usually use proof by induction.

1. Show the recursive algorithm is (trivially) correct on its base case(s).

2. Inductive step: show that the recursive algorithm is correct, assuming that the smaller

cases are all correct.

2 Lecture Review: D&C

Here are the usual steps for using Divide and Conquer (D&C) problem solving paradigm for problems

that are amenable to it:

1. Divide: Divide/break the original problem into > 1 smaller sub-problems.

1



2. Conquer: Conquer/solve the sub-problems recursively.

3. Combine (optional): Optionally, combine the sub-problem solutions to get the solution of the

original problem.

The most classic D&C example is Merge Sort.

1. Divide: Divide/break the original problem of sorting n elements into 2 smaller sub-problems of

sorting n
2 elements.

2. Conquer: Conquer/solve the sorting of n
2 elements recursively.

3. Combine (optional): Merge 2 already sorted n
2 elements.

3 Tutorial 03 Questions

Q1). Consider the following iterative sorting algorithm InsertionSort(A).

for i ∈ [1..N − 1] // outer for loop i

1. let X be A[i] // X is the next item to be inserted into A[0..i− 1]

2. for j ∈ [i− 1..0] (down) // inner for loop j

(a) if A[j] > X, set A[j + 1] = A[j] // make a place for X

(b) else, break

3. A[j + 1] = X // insert X at index j + 1

Assuming the inner for loop j is correct, answer the following two questions:

1. What is the suitable loop invariant for the outer for loop i?

2. Show the invariant after initialization, maintenance, and termination.

Q2). Consider the following recursive sorting algorithm StoogeSort(A).

1. Let n be the length of array A.

2. If n = 2 and the first number is larger than the second number, swap the two numbers.

3. If n > 2, do the following three steps sequentially.

(a) Apply StoogeSort to sort the initial ⌈2n/3⌉ numbers recursively.

(b) Apply StoogeSort to sort the final ⌈2n/3⌉ numbers recursively.

(c) Apply StoogeSort to sort the initial ⌈2n/3⌉ numbers recursively.

Answer the following three questions:

2



1. Prove that StoogeSort(A) correctly sorts the input array A.

For the sake of simplicity, you may assume that all numbers in A are distinct.

2. Analyze the time complexity of StoogeSort.

Q3, Q4, Q5. involves Finding a Peak Problem

You are given a 2D array of m rows and n columns.

Each cell has a number

You want to find any single peak: A cell where the number is ≥ than all of its (up to) four

(North/East/South/West) neighbors.

For example, given m× n = 3× 5 grid below, there are 5 peaks (denoted with a ‘*’):

6 8* 7 7* 1

9* 3 1 7* 3

8 4 5* 3 2

Q3). Show that there is a peak in every 2D array!

We want to come up with a recursive algorithm to find any peak: FindPeak(A):

1. If A has only n = 1 column, then Return the maximum element in the column.

2. Otherwise (if A has n >= 2 columns),

(a) Consider the middle column of A,

(b) Find a maximum element on that middle column

(c) Check if that element is a peak

(d) If yes, then Return that element

(e) Otherwise,

i. X = FindPeak(Left Half of A without the middle column)

ii. Y = FindPeak(Right Half of A without the middle column)

iii. If either X or Y is a peak, Return it, else Return None // see Question Q3.

Q4). What in the runtime complexity of FindPeak(A) algorithm?

Q5). Should FindPeak(A) algorithm do both step 2.(e).i and step 2.(e).ii.?

3


	Lecture Review: Proof of Correctness
	Lecture Review: D&C
	Tutorial 03 Questions

