
CS3230 Semester 1 2024/2025

Design and Analysis of Algorithms

Tutorial 06

Dynamic Programming

For Week 07

Document is last modified on: August 17, 2024

1 Lecture Review: Dynamic Programming

The key ideas to solve a problem with Dynamic Programming (DP) are as follows:

• Optimal substructure: Can we express the solution recursively?

Break the original problem into its subproblems.

• Realizes that there are only a small (maybe polynomial) number of subproblems.

The naive implementation of the recursive solution encounters many overlapping subproblems.

The recursive algorithm may take exponential time (solving the same subproblem many times).

So we either:

• Top-down: Compute the recursive solution but memoize the solutions of the computed subprob-

lems, so the next computation of the same subproblem can be done in O(1).

• Bottom-up: Compute the recursive solution iteratively in a bottom-up fashion, starting from

the base cases and continue filling the next subproblems that we can compute next, gradually.

Both methods avoids wastage of computation and leads to an efficient implementation.

2 Tutorial 06 Questions

Q1, Q2, Q3. are all related to the Convex Polygon Triangulation problem: Given a convex

polygon with n (n ≥ 2) vertices (labeled with 1, 2, . . . , n), divide (or triangulate) the polygon into

n− 2 triangles. We can triangulate a convex polygon in many ways. The figure below shows 2 ways

(middle and right pictures).

1



A triangle consisting of vertices (x, y, z) will have a weight of W (x, y, z) – for the purpose of this

problem, treat W as a black-box O(1) function. Our objective is to minimize the sum of the weights

of n− 2 triangles in the optimal triangulation!

Q1). Let TRI(x, y) be a function to triangulate a polygon with minimum weight sum, but we only

consider the vertices in the range of (x, x + 1, x + 2, . . . , y). So our problem can be solved by calling

TRI(1, n). Your first task is to write a recursive formula of TRI(x, y). Hints: It calls TRI(x′, y′)

where x < x′ or y′ < y.

Q1a). Find the base case of TRI(x, y)

Q1b). Find the recursive case of TRI(x, y)

Q2). What is the time complexity of this recursive formula TRI(1, n), if implemented verbatim.

1. O(n2)

2. O(n3)

3. O(3n)

Q3). Which one is the correct explanation regarding the findings from Q2).?

1. It has 3n non-overlapping subproblems and each call runs in Θ(1)

2. It has n2 non-overlapping subproblems and each call runs in Θ(3
n

n2 )

3. It has n2 subproblems but there are many overlaps

Q4). Design a Dynamic Programming (DP) solution for Convex Polygon Triangulation problem.

Q4a). Use Top-Down DP!

Q4a). Use Bottom-Up DP!

2


	Lecture Review: Dynamic Programming
	Tutorial 06 Questions

