
CS3230 Semester 1 2024/2025

Design and Analysis of Algorithms

Tutorial 08

Amortized Analysis

For Week 09

Document is last modified on: August 17, 2024

1 Lecture Review: Amortized Analysis

Amortized analysis is a strategy for analyzing a sequence of operations (notice plural; one operation

repeated several times or several operations intermixed) to show that the average cost per operation

is small, even though a single operation within the sequence might be expensive.

Amortized analysis is not about calculating expected runtime and thus no probability theory

involved. Amortized analysis guarantees the average performance of each operation in the

worst case.

There are three common amortization arguments, and we will use two of them in this tutorial:

1. Aggregate method

2. Accounting (or Banker’s) method

3. Potential method

1.1 Aggregate Method

Aggregate method is the most straightforward method (recall binary counter increment analysis from

the lecture). In aggregate method, we try to show that for all n, a sequence of n operations takes T (n)

in the worst-case. The average, or amortized cost, per operation is therefore T (n)
n in the worst-case.

This method might be hard to apply in general. We will generally not use this method going forward.

1.2 Accounting Method

We charge the i-th operation a fictitious (larger) amortized cost C(i) than its true cost T (i), assuming

that $1 pays for 1 unit of work (time).

1

Every time we perform an operation, we consume this $1 fee, but any amount that is not im-

mediately consumed is stored in the (virtual) bank to be used by subsequent (i.e., more expensive)

operations.

The idea is to impose an extra charge on inexpensive (and usually many) operations and use

it to pay for expensive (and usually rare) operations later on.

At any given time, the bank balance must not go negative, i.e., we want to ensure that

∀Q,
∑Q

i=1 T (i) ≤
∑Q

i=1C(i). This way, the total amortized costs provides an upper bound on the

total true costs.

1.3 Potential Method

To use potential method, we need to determine a suitable potential function ϕ that satisfies two

properties: ϕ(0) = 0 (initially, the potential is zero) and ϕ(i) ≥ 0,∀i > 0 (the potential never goes

negative). A good heuristic for determining ϕ is to find “something which decreases a lot after

performing the expensive operations!”. If we can find this suitable ϕ, then the amortized cost is

C(i) = T (i) + (ϕ(i)− ϕ(i− 1)) (the actual cost plus the difference of potential).

2 Tutorial 08 Questions

Note: For Questions Q1+Q2 involving Dynamic Table, go to https://visualgo.net/en/array?

mode=array (so we do not trigger the sorted array mode), click ‘Create M, N’, set N = M (or M = N ,

either way is fine), click ‘Random’ (to create a full array with N = M random integers), then click

‘Insert(v)’, then click ‘Append’ (to append any value at the back of this full array, hence triggering

the Dynamic Table animation).

Q1). Which one of the following statements is incorrect?

1. The amortized cost C(i) for the insertion in Dynamic Table is Θ(1)

Also see Q2).

2. In the accounting method, C(i) is always greater than the actual cost T (i) of an operation

3. ∀Q,
∑Q

i=1C(i)−
∑Q

i=1 T (i) ≥ 0

Q2). is hidden, but it is related to Dynamic Table that we have discussed in Lecture.

Note: For Questions Q3+Q4 involving Queue ADT with MultiEnqueue and MultiDequeue capabili-

ties, go to https://visualgo.net/en/list?mode=Queue (so we trigger Queue mode).

Q3). You are given a data structure based on the Queue ADT with the following operations:

• ENQUEUE(x): Put element x to the back of the queue

Just set v = x (a single integer) in the ‘Enqueue’ menu

• DEQUEUE(): Remove one element from the front of the queue

Just select ‘1x’ in the ‘Dequeue’ menu

2

https://visualgo.net/en/array?mode=array
https://visualgo.net/en/array?mode=array
https://visualgo.net/en/list?mode=Queue

• DELETE(k): Remove the first k elements from the queue

Set the value of K = k before selecting ‘Kx’ in the ‘Dequeue’ menu

• ADD(A): Put all elements in array A to the queue

Set v = A (put A as comma separated integers) in the ‘Enqueue’ menu

Prove the following claims using Accounting Method (stating the amortized costs/the bank charges

of each operation), assuming that the queue is initially empty: “All operations run in amortized O(1)

time, except ADD which runs in amortized O(|A|) time”.

Q4). is hidden, but it is related to the same Queue ADT above.

Q5). Consider another version of Dynamic Table with only deletion of the last element (POP()),

i.e., there is no insertion involved. The pseudo-code:

POP():

n = n-1;

if (n == 0):

free(T)

else if (n <= size(T) / 2):

T’ = createTable(n)

copy(T, T’)

free(T)

T = T’

An example illustration with size(T) = 2n = 2× 8 = 16, n+ 1 = 9, call POP(), and then n = 8:

Prove using Potential Method that POP() runs in amortized O(1).

State your potential function.

Assume n is initially equal to size(T).

3

	Lecture Review: Amortized Analysis
	Aggregate Method
	Accounting Method
	Potential Method

	Tutorial 08 Questions

