safety & liveness properties

COHCQPTSl : true for every possible

execution

Safety and Liveness
: nothing bad happens

: something good eventually happens

Models: : no reachable ERROR/STOP state
1 anaction is eventually executed

Abhik Roychoudhury
fair choice and action priority

CS 3211
National University of Singapore

Practice: threads and monitors
From Kramer and Magee’s lecture notes.
Reading material: Chapter 7 of Textbook. . a 3
Aim: property sahsfachori,
1
7.1 Safety Safety - property specification

+ERROR conditions state what is not required (cf. exceptions).

¢ in complex systems, it is usually better to specify safety
by stating directly what is required.

bad

¢ STOP or deadlocked state (nho outgoing transitions)

+ ERROR process (-1) to detect erroneous behaviour command
command ACTUATOR SAFE_ACTUATOR
=(command->ACTION), =-(:omman:
ACTION respon
=(respond->ACTUATOR | 4 -> SAFE_ACTUATOR
respond | command->ERROR). pon respon)-
command command
Trace to ERROR:
command
command
Safety properties Safety properties
that it is polite to knock before entering a room. Safety s @ dEiEsie
Traces: knock>enter M enter process that asserts that any trace including
i i P, i P.
knock>knock actions in the alphabet of P, is accepted by
POLITE Thus, if P is composed with S, then fraces of
= (knock->enter->POLITE). knock actions in the alphabet of S N alphabet of P
must also be valid traces of P, otherwise ERROR

o o is reachable.

In all Sta resf all Since all actions in the alphabet of a property are eligible choices,
the actions in the composing a property with a set of processes does not affect their
Iphabet behavior. However, if a behavior can occur which violates
aipna ofa enter enter the safety property, then ERROR is reachable. Properties must

property are be deterministic to be transparent.
eligible choices. knock

Safety properties

¢ How can we specify that some action, disaster
never occurs?

@, ®

disaster

‘ CALM = STOP + {disaster}.

A safety property must be specified so as to
include all the acceptable, valid behaviors in its
alphabet.

Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit
-> mutex.up -> LOOP).
| ISEMADEMO = (p[1..3]:LOOP
| 1{p[1..3]}::mutex:SEMAPHORE(1)).

Howdowe | MUTEX =(pli:1..3].enter
check_ that this -> plil.exit
does indeed -> MUTEX).

ensure mutual || | CHECK = (SEMADEMO | | MUTEX).
exclusion in

the critical
section safety

7.2 Single Lane Bridge problem

oy oE

Festat | OneCar| TwoCas| ThieeCars | Sale [~ Fair

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if two cars
moving in different directions enter the bridge at the same time.

Single Lane Bridge - model
+ Events or actions of interest?

enter and exit
¢ Identify processes.

. property
cars and bridg ONEWAY
+ Identify properties.
oneway
¢ Define each process Single red[")r Ublue[ID]._
and interactions | Lane | fenterexit {enterexiq
Bridge BRIDGE
(structure).

Single Lane Bridge - CARS model

const N =3 //number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter->exit->CAR).

To model the fact that cars cannot pass each
other on the bridge, we model a CONVOY of cars
in the same direction. We will have a red and a
convoy of up to N cars for each direction:

| ICARS = (red:CONVOY | | :CONVOY).

Single Lane Bridge - CONVOY model

NOPASS1 = (C[1], //preserves entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = (C[1], //preserves exit order

C[Li:ID] = ([il.exit-> C[i%N+1]).
| |CONVOY = ([ID]:CAR| | NOPASS1| | NOPASS2).

1.enter 2.enter 1.exit 2.exit

o 9 o6 ® ©

3.enter 3.exit
Permits 1l.enter-> 2.enter-> l.exit> 2.exit
but not 1.enter- 2.enter-> 2.exit-> l.exit
/e. no overtaking.

Single Lane Bridge - BRIDGE model

Cars can move concurrently on the bridge only if in the same direction. The
bridge maintains counts of and red cars on the bridge. Red cars are
only allowed to enter when the count is zero and vice-versa.

RIDGE = BRIDGE[O0][(], // initially empty
RIDGE[nr:T][nb:T] = //nr is the red count, b the
(when()
red[ID].enter -> BRIDGE[nr+1][nb] /I
| red[ID].exit -> BRIDGE[nr-1][nb]
| when (nr==0)
[ID]. -> BRIDGE[nr][1 /Inr==
| [ID]. -> BRIDGE[nr][1
)-

Single Lane Bridge - safety property
ONEWAY

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly for
cars. When the bridge is empty, either ared or a car may enter.

property ONEWAY =(red[ID].enter -> RED[1]
| .[ID]. -> [1]

)
REDI[i:ID] = (red[ID].enter -> RED[i+1]
| when(i==1)red[ID].exit -> ONEWAY
| when(i>1) red[ID].exit -> RED[i-1]
) /i is a count of red cars on the bridge
[i:ID]= (blue[ID].enter-> BLUE[i+1]

| when(i==1)blue[ID].exit -> ONEWAY
| when(i>1)blue[ID].exit -> BLUE[i-1]
) Vi

Single Lane Bridge - model analysis

| | SingleLaneBridge = (CARS| |
BRIDGE | | ONEWAY).
Is the safety
property ONEWAY
violated?

| | SingleLaneBridge = (CARS | | ONEWAY).

Without the
BRIDGE
contraints, is the
safety property
ONEWAY violated:

Single Lane Bridge - implementation in
Java

/\ /\

/\

Safe
Bridge

BridgeCanvas

Single
Lane
Bridge

Single Lane Bridge - BridgeCanvas

An instance of BridgeCanvas class is created by SingleLaneBridge applet -
ref is passed to each newly created RedCar and BlueCar object.

class BridgeCanvas extends Canvas {
public void init(int ncars) {...} /set number of cars

//move red car with the identity i a step
//returns true for the period on bridge, from just before until just after
public boolean moveRed(int i)

throws InterruptedException{...}

//move blue car with the identity i a step
//returns true for the period on bridge, from just before until just after
public boolean moveBlue(int i)

throws InterruptedException{...}

public synchronized void freeze(){...}/ fieeze display
public synchronized void thaw(){...} /unfreeze display

Single Lane Bridge - RedCar

class RedCar implements Runnable {

BridgeCanvas display; Bridge control; int id;

RedCar(Bridge b, BridgeCanvas d, int id) {
display = d; this.id = id; control = b;

public void run() {
t

while(true) {
while (!display.moveRed(id)); // not on bridge
control.redEnter(); /request access to bridge
while (display.moveRed(id)); // move over bridge
control.redExit(); // release access to bridge

>
} catch (InterruptedException e) {}

Single Lane Bridge - class Bridge

class Bridge {
synchronized void redEnter()
throws InterruptedException {}
synchronized void redExit() {}
synchronized void blueEnter()
throws InterruptedException {}
synchronized void blueExit() {3

Class Bridge provides a null implementation of the
access methods i.e. no constraints on the access to
the bridge.

Result.......... ?

Single Lane Bridge

Freeze | Restat| OneCar [TwoCars [Three Ears; ™ Fair

/
To ensure safety, the "safe” check box must be
chosen in order to select the SafeBridge
implementation.

Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {

private int nred = 0; /number of red cars on bridge
private int nblue = 0; /number of blue cars on bridge

// Monitor Invariant: nred20 and nblue20 and
Va not (nred>0 and nblue>0)

synchronized void redEnter()
throws InterruptedException {
while (nblue>0) wait();
++nred;

synchronized void redExit(){
--nred;
if (nred==0)notifyAll();

Single Lane Bridge - SafeBridge

synchronized void blueEnter()
throws InterruptedException {
while (nred>0) wait();
++nblue;

synchronized void blueExit(){
--nblue;
if (nblue==0)notifyAll();

H

H \
To avoid unnecessary thread switches, we use conditional notification

to wake up waiting threads only when the number of cars on the bridge
is zero i.e. when the last car leaves the bridge.

But does every car eventually get an opportunity to
cross the bridge? This is a liveness property.

7.3 Liveness

Single Lane Bridge: Does every car
get an opportunity to cross the bridge?

ie. make PROGRESS?

A asserts that it is a/ways the case
that an action is eventually executed. Progress is the
opposite of starvation, the name given to a concurrent
programming situation in which an action is never
executed.

Progress properties - fair choice

If a coin were tossed an| COIN =(toss->heads->COIN
infinite number of times | toss->tails->COIN).
we would expect that
heads would be chosen

toss

infinitely often and that foss
tails would be chosen

infinitely often.

This requires Fair heads
Choice |

tails.

Progress properties

progress P = {al,a2.an} defines a progress
property P which asserts that in an infinite
execution of a farget system, at least one of the
actions al,a2..an will be executed infinitely often.

ﬂl]|:> COIN system: progress HEADS = {heads}®?
progress TAILS = {tails} ?}/

LTSA check progress:| No progress violations detected.

Progress properties
Suppose that there were two possible coins that

could be picked up: pick
a trick coin pick 1058
and a i//b\ :

heads

heads

TWOCOIN = (pick->COIN | pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).

IES) TWOCOIN: progress HEADS = {heads}/}
progress TAILS = {tails} ?X

Progress properties

pick
:pick toss
progress HEADS = {heads} heads

heads

progress TAILS = {tails}

Progress violation: TAILS

LTSA check PPOQFeSm:> Path to terminal set of states:
pick

Actions in terminal set:

{toss, heads}

progress HEADSorTails = {heads,tails} eVl

Progress analysis

A is one in which every state is reachable from
every other state in the set via one or more transitions, and there is no
transition from within the set to any state outside the set.

for TWOCOIN:

heads

Given , each terminal set represents an execution in which each
action used in a transition in the set is executed infinitely of ten.

Since there is no transition out of a terminal set, any action that is not
used in the set cannot occur infinitely often in all executions of the
system - and hence represents a potential progress violation!

Progress analysis

A progress property is violated if analysis finds a
terminal set of states in which none of the
progress set actions appear.

|[|:> progress TAILS = {tails} in
: given fair choice, for action in the alphabet of the target

system, that action will be executed infinitely often. This is equivalent to
specifying a

|[|:> Default pick
analysis for

TWOCOIN? iPick tosg

heads

Progress analysis

Default analysis for Progress violation for actions:
TWOCOIN: {pick}
Path to terminal set of states:
pick
|[|:> Actions in terminal set:
{toss, heads, tails}
|[|:> Progress violation for actions:
{pick, tails}
toss Path to terminal set of states:
pick
Actions in terminal set:
heads {toss, heads}

heads.

re.
every action is executed infinitely often and system consists of a
single terminal set of states.

Progress - single lane bridge
The Single Lane Bridge
implementation can
permit progress
violations.

However, if default
progress analysis is
applied to the model

then no violations are . o] | G|] oo |"Y'*§"' .

detected!
Why not? |

Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must check under adverse conditions. We superimpose
some scheduling policy for actions, which models the situation in

N which the bridge is congested.

Progress - action priority

Action priority expressions describe scheduling
properties

High
Priorit

Y
("<<")

Low
Priorit

Y
">>"

Progress - action priori e

NORMAL =(work->play->NORMAL
| sleep->play->NORMAL).

Action priority simplifies the resulting LTS by

discarding lower priority actions from choices. play
| IHIGH
=(NORMAL)<<{work}.
play
sleep
| lLOW
=(NORMAL)>>{work}.
play

7.4 Congested single lane bridge

BLUECROSS - eventually one of the blue cars will be able to enter
REDCROSS - eventually one of the red cars will be able to enter
w=p Congestion using action priority?

Could give red cars priority over blue (or vice versa) ? In
practice neither has priority over the other.

Instead we merely encourage congestion by /owering the
priority of the exit actions of both cars from the bridge.

| | CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

== Progress Analysis ? LTS?

con ested single lane bridge model

congested single lane bridge model

| | CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

red.1.enter

blue.1.enteblue.2.enterblue.1.exitblue.1.enter red.2.enter red.1.exit red.1.enter

blue.2.exit red.2.exit

Will the results be the same if we model congestion by giving car entry
to the bridge high priority?

Can congestion occur if there is only one car moving in each direction?

Progress - revised single lane bridge
model

Progress - revised single lane bridge
model

The bridge needs to know whether or not cars are
waiting to cross.

Modify CAR:
| CAR = (request->enter->exit->CAR).

Modify BRIDGE:

Red cars are only allowed to enter the bridge if
there are no cars on the bridge there
are to enter the bridge.

cars are only allowed to enter the bridge if
there are no red cars on the bridge and there are
no red cars waiting to enter the bridge.

/*Nr— number of red cars on the bridge Wr — number of red cars waiting to enter

nb— number of blue cars on the bridge -
*/
BRIDGE = BRIDGE[0][0][0]["],
BRIDGE[nr:T][nb:T][wr:T][Wwh:T] =
(red[ID].request -> BRIDGE[nr][nb][wr+1][wh]
|when (nb==0 &&)
red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
| red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]

| blue[ID]. -> BRIDGE[nr][nb][wr][1
| when (nr==0 && wr==0)
[ID]. -> BRIDGE[nr][nb+1][wr][1
| [ID]. -> BRIDGE[nr][nb-1][wr][wb]
)
K now?:

Progress - analysis of revised single lane
bridge model

Trace to DEADLOCK: The trace is the scenario in
red.1.request which there are cars
red.2.request waiting at both ends, and
red.3.request consequently, the bridge
blue.1.request does not allow either red or
blue.2.request blue cars to enter.
blue.3.request

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of cars or red cars
to enter the bridge.

Arbitrarily set bt to true initially giving initial precedence.

Progress - 2 " revision of single lane
bridge model

constTrue =1 3
const False = 0 = A”a/y sis
range B = False..True ?
/% bt - indicates turn, false indicates red turn ¥/
BRIDGE = BRIDGE[0][01[0][0][Truel,
BRIDGE[nr:T][nb:TI[wr:T][wb:T][bt:B] =

(red[ID].request -> BRIDGE[nr][nb][wr+1][wh][bt]

|when (nb==0 && (| 11bt))

red[ID].enter -> BRIDGE[nr+1][nb][wr-1][whb][bt]
|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]

| [ID]. -> BRIDGE[nr][nb][wr][1[bt]
|when (nr==0 && (wr==0] | bt))

[ID]. -> BRIDGE[nr][nb+1][wr][1[bt]
| [ID]. -> BRIDGE[nr][nb-1][wr][wh][False]

).

Revised single lane bridge
implementation - FairBridge
class FairBridge extends Bridge {
private int nred = 0; //count of red cars on the bridge
private int nblue = 0; //count of blue cars on the bridge
private int waitblue = 0; //count of waiting blue cars
private int waitred = 0; //count of waiting red cars
private boolean blueturn = true;

synchronized void redEnter()
throws InterruptedException {
++waitred;
while (nblue>0| | (waitblue>0 && blueturn)) wait();
--waitred;
++nred;

Revised single lane bridge
implementation - FairBridge

. i) This'is a direct
syr:glg);mzed void redExit(){ Franslation from

blueturn = true; the model.

synchronized void blueEnter(){
throws InterruptedException {

++waitblue;

while (nred>0] | (waitred>0 && !blueturn)) wait();

--waitblue;

++nblue;

The 'fair” check

synchronized void blueExit(){ box must be

--nblue; chosen in order:

blueturn = false;

i
if (nblue==0) notifyAll(); FoirBridge

ta select the

¥ implementation;

}if (nred==0)notifyAll();

Note that we did not need to introduce a new request monitor method.
The existing enter methods can be modified to increment a wait count

before testing whether or not the caller can access the bridge.

7.5 Readers and Writers

ReadWriteSafe
readers= 1 writing= false

EHON

Run | Pause ﬁ“ Fause Rﬂnl Fause l!unl huul
A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive access
to the database; any number of Readers may concurrently access it.

readers/writers model

+ Events or actions of interest?

acquireRead, releaseRead, acquireWrite,
releaseWrite

¢ Identify processes.
Readers, Writers & the RW_Lock
¢ Identify properties reader(1. Nread: witer1. Nit]:
READER WRITER
RW_Safe
RW_Progress
+Define each process| writers:

READWRITELOCK
acquireRead acquireWrite
releaseRead

and interactions
(structure).

readers/writers model - READER &
WRITER

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
+ Actions
\ {examine}.

WRITER = (->modify-> ->WRITER)
+ Actions
\ {modify}.

Alphabet extension is used fo ensure that the other access actions
cannot occur freely for any prefixed instance of the process (as
before).

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

readers/writers model - RW_LOCK

1
const False = 0 const True =1 The lock
range Bool = False..True maintains:a:
const Nread = 2 // Maximum readers count of the
const Nwrite= 2 number of

readers, and'a

RW_LOCK = RW[O0][1 Boolean for:
RW([readers:0..Nread][:Bool] = the writers:

(when ()

acquireRead -> RW[readers+1][1
|releaseRead -> RW[readers-1][1
| when (readers==0 &&)
acquireWrite -> RW[readers][1
|releaseWrite -> RW[readers][|

readers/writers model - safety

property SAFE_RW
= (acquireRead -> READING[1]
-> WRITING

)
READING[i:1..Nread]
= (acquireRead -> READING[i+1]
| when(i>1) releaseRead -> READING[i-1]
| when(i==1) releaseRead -> SAFE_RW

)
WR,ITING =(-> SAFE_RW).

We can check that RW_LOCK satisfies the safety property.....

| IREADWRITELOCK = (RW_LOCK | | SAFE_RW).

w==> Safety Analysis ? LTS?

readers/writers model

acquireRead

An ERROR occurs if a
reader or writer is badly
behaved (release before
acquire or more than two
readers).

acquireliite acquireRead

releaseRead releaseWiite
releaseWrite

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
acquireRead structure.. ...

releaseWrite

releaseWiite

| IREADERS_WRITERS

= (reader{1..Nread] :READER = Safety
| | writer[1..Nwrite]:WRITER and
| |{reader[1..Nread],
writer[1..Nwrite]}::READWRITELOCK). Progr €ss
Analysis ?

readers/writers - progress

- eventually one of the will acquireWrite
READ - eventually one of the readers will acquireRead

w=> Adverse conditions using action priority?

we lower the priority of the release actions for both
readers and .

readers/writers model - progress

The number
of readers
never drops
to zero.

| |RW_PROGRESS = READERS_WRITERS
>>{reader[1..Nread].releaseRead,
writer[1..Nwrite].releaseWrite}.

== Progress Analysis ? LTS?

reader.1.acquireRead — TI'}’ fhe
Applet!

reader.2.acquireRead

writer.1.acquireWrite

writer.2.acquireWrite reader.1.acquireReareader.2.releaseRead

reader.1.releaseReareader.2.acquireRead

writer.2.releaseWrit

writer.1.releaseWrite

readers/writers implementation -
monitor interface
We concentrate on the monitor implementation:

interface ReadWrite {
public void acquireRead()
throws InterruptedException;
public void releaseRead();
public void acquireWrite()
throws InterruptedException;
public void releaseWrite();

We define an that identifies the monitor
methods that must be implemented, and develop a
number of alternative implementations of this
interface.

Firstly, the safe READWRITELOCK.

readers/writers implementation -
ReadWriteSafe

class R i impl ReadWrite {
private int readers =0;
private boolean writing = false;

public synchronized void acquireRead()
throws InterruptedException {
while (writing) wait();
++readers;

public synchronized void releaseRead() {
--readers;
if(readers==0) notify();

H

~.

Unblock a when no more readers.

readers/writers implementation -
ReadWriteSafe

public synchronized void acquireWrite()
throws InterruptedException {
while (readers>0 | | writing) wait();
writing = true;

public synchronized void releaseWrite() {

writing = false;
notifyAll();

H \

Unblock all readers
However, this monitor implementation suffers from the WRITE
progress problem: possible if the number of

readers never drops to zero. .
== Solution?

readers/writers - writer priority

Strategy:
Block readers
if there is a
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
releaseWrite,requestWrite}

WRITER =(requestWrite-> ->modify
-> ->WRITER

)+Actions\{modify}.

readers/writers model - writer priority

RW_LOCK = RW[0][False][0],
RWI[readers:0..Nread][writing:Bool][waitingW:0..Nwrite] =
(when ('writing && waitingW==0)
acquireRead -> RW[readers+1][writing][waitingW]
| releaseRead -> RW[readers-1][writing][waitingW]
| when (readers==0 && !writing)
acquireWrite-> RW[readers][True][waitingW-1]
| releaseWrite-> RW[readers][False][waitingW]
| requestWrite-> RW[readers][writing][waitingW+1]

== Safety and Progress Analysis
?

readers/writers model - writer priority
property RW_SAFE:

| No deadlocks/errors |

progress READ and WRITE:

Progress violation: READ

{writer.1.requestWrite, writer.1.acquireWrite,
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

In practice, this may be satisfactory as is usually more read access than

write, and readers generally want the most up to date information.

Path to terminal set of states: Reader

i i starvation:

writer.1.requestWrite A
writer.2.requestWrite ly:
Actions in terminal set: waiting.

readers/writers implementation -
ReadWritePriority

class ReadWritePriority implements ReadWrite{
private int readers =0;
private boolean writing = false;
private int waitingW = 0; // no of waiting Writers.

public synchronized void acquireRead()
throws InterruptedException {
while (writing | | waitingW>0) wait();
++readers;

1

public synchronized void releaseRead() {

--readers;

if (readers==0) notifyAll();
‘ May also be readers waiting

readers/writers implementation -
ReadWritePriority

synchronized public void acquireWrite()
throws InterruptedException {
++waitingW;
while (readers>0 | | writing) wait();
--waitingW;
writing = true;

¥

synchronized public void releaseWrite() {
writing = false;
notifyAll();

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

Summary
@ Concepts
properties: true for every possible execution
safety: nothing bad happens
liveness: something good eventually happens
@ Models
safety: no reachable ERROR/STOP state
compose safety properties at appropriate stages
progress: an action is eventually executed
fair choice and action priority
apply progress check on the final system model
@ Practice

threads and monitors

DAim: property satisfaction

10

