POSTER: Expanding the Design Space for in-Network
Congestion Control on the Internet

Ayush Mishra*, Harsh Gondaliya*, Lingesh Kumaar*", Archit Bhatnagar*,

Raj Joshi*®, Ben Leong*
*National University of Singapore "BITS Pilani *UC San Diego *Harvard University

CCS CONCEPTS

* Networks — Programmable networks; In-network process-
ing; Transport protocols; Public Internet.

KEYWORDS
Programmable Networks; p4; Congestion Control

ACM Reference Format:

Ayush Mishra, Harsh Gondaliya, Lingesh Kumaar, Archit Bhatnagar, Raj
Joshi, Ben Leong. 2024. POSTER: Expanding the Design Space for in-
Network Congestion Control on the Internet. In ACM SIGCOMM 2024
Conference (ACM SIGCOMM Posters and Demos ’24), August 4-8, 2024,
Sydney, NSW, Australia. ACM, New York, NY, USA, 3 pages. https://doi.org/
10.1145/3672202.3673733

1 INTRODUCTION

The Internet has historically been built on the assumption of a smart
edge and a dumb network. This design philosophy is also reflected
in end-to-end Internet congestion control. The stability and gen-
eral fairness of the current Internet are heavily reliant on end hosts
implementing congestion control algorithms (CCAs) correctly. Main-
taining fairness between flows on the Internet with end-host-based
algorithms is a hard problem. Even when the Internet was dominated
by a homogeneous mix of loss-based AIMD CCAs, unfairness was
an issue between flows with different RTTs [11]. While some delay-
based algorithms were able to achieve RTT fairness, they became
susceptible to unfairness arising from a late-comer advantage [1].

Today, the Internet has a more diverse mix of CCAs than ever
before [13]. Algorithms with contrasting congestion control philoso-
phies, such as CUBIC and BBR, coexist, leading to well-known
fairness issues [8, 17]. Additionally, undocumented and rogue CCAs
are being deployed [13]. The net result is that unfairness is a reality
of the Internet today.

From a game-theoretic point of view, end hosts have little incen-
tive to ensure fairness. It is therefore not surprising that new CCAs
are deployed on the Internet with little regard to their impact on
existing traffic while the fairness issues are addressed retroactively
(e.g. the deployment of BBRv1 [5] and BBRvV2 [6]). This is clearly
not a healthy trend and we need a way to ensure that CCAs do not
“overstep” their limits when they compete with other flows on the
Internet, or we might risk another congestion collapse [9].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM SIGCOMM Posters and Demos ’24, August 4-8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0717-9/24/08.

https://doi.org/10.1145/3672202.3673733

1.1 In-Network Solutions to Internet Congestion
Control

We argue that the network is the perfect place to deploy mechanisms
that can “limit” the amount of unfairness that a flow can inflict on
competing traffic. This is because the network has information on
the state of congestion as well as the volume of competing traffic to
determine the bounds within which each flow must operate. Note
that our aim here is modest: we want to bound a flow’s aggression
and not attempt to maintain perfect per-flow fairness. This is because
not all flows are the same and per-flow fairness is not always the
most desirable outcome. For example, per-flow fairness can unfairly
benefit applications that open a large number of connections. Ware
et al. argued for a similar goal and defined a metric for aggression,
but stopped short of providing a solution [16].

To this end, any practical in-network congestion control solution
for the Internet must address the following challenges:

(1) Agnostic to end hosts. Given the current heterogeneity of the
Internet’s congestion control landscape, we should be end-host
agnostic and work with all CCAs.

(2) “Enforce” send rate reduction. Since the end hosts have little
incentive to maintain fairness, an ideal solution cannot rely on
them actively collaborating with the in-network CCA. We should
be able to slow senders down even when they ignore implicit
and explicit congestion signals.

Several existing solutions can satisfy these requirements, with
most of them targeting per-flow fairness. AFQ [15] and SP-PIFO [2]
try to simulate fair queuing in commodity switches. However, they
require multiple queues with many priority levels and do not scale
to a large number of flows. Classic AQMs [7, 12] use admission
control and packet drops to force a flow to back off. However, this
approach would not work with the likes of BBRv1, which is largely
loss-agnostic. Cebinae [18] aims to nudge competing flows towards
long-term max-min fairness, but it takes seconds to converge and is
hard to parameterize.

1.2 The Case for an rwnd-based Solution

The appropriate algorithm for determining the limits within which
each flow must operate is likely to be subjective. However, we argue
that the TCP receive window (rwnd) is a natural clamping mech-
anism for limiting a flow’s aggression. While it is supposed to be
used for flow control, it can be easily modified by network switches
to artificially limit how much data a flow can send. Since, by default,
the TCP stack does not allow a flow to keep more than rwnd bytes in
flight, an rwnd-based solution would be end-host agnostic and effec-
tive without explicit collaboration from the end hosts. Moreover, as
long as the set rwnd is not greater than the rwnd set by the receiver, it


https://doi.org/10.1145/3672202.3673733
https://doi.org/10.1145/3672202.3673733
https://doi.org/10.1145/3672202.3673733

Control Plane
backin
A%ia9 [ws, RTT]

Data Plane

Figure 1: Flowtamer design.

would not interfere with the flow control mechanism. Therefore, we
propose Flowtamer, a new! rwnd-based framework for deploying
in-network CCAs on commodity programmable switches.

2 FLOWTAMER

Our goal is to provide an actuation framework to easily implement

rwnd-based in-network CCAs on programmable switches. However,

it is not straightforward to build such a framework because of the
following challenges:

(1) Window scaling: The rwnd value in TCP packets is scaled by
the window scaling (WS) factor which is communicated only
during the 3-way handshake. Therefore, we need to keep track
of the WS for each flow.

(2) TCP Checksum: Modifying the rwnd affects the TCP check-
sum whose computation includes the payload. We need to update
the TCP checksum even when the switch dataplane pipelines do
not have access to the payload.

(3) Compensating for different RTTs: Since competing flows can
have varying RTTs, an rwnd-based in-network CCA would need
to account for it for a fairer rwnd enforcement. Therefore, we
need to measure and make available per-flow RTT information.

(4) Scaling per-flow state: Maintaining the required per-flow state
(WS and RTT) is non-trivial due to memory constraints in the
switch dataplane.

As shown in Figure 1, Flowtamer spans both the data and con-
trol planes on a switch and provides high-level APIs to implement
rwnd-based in-network CCAs. In particular, the APIs provide the
CCA real-time access to port queue lengths and a way to set rwnd
that would be applied to TCP (ACK) packets flowing through the
dataplane. Flowtamer also provides dataplane-based measurements
of per-flow RTT and WS that is used for rwnd adjustment. At run-
time, Flowtamer works in periodic rounds of configurable duration.
In each round, the CCA logic uses queue size and other metrics and
performs congestion control by adjusting the rwnd. The CCA can
use the per-flow RTT info to proportionally scale the rwnd for flows
with different RTTs. The final rwnd value that is set into the TCP
packet header is adjusted by Flowtamer depending on the flow’s
WS.

Design. For tracking per-flow WS, Flowtamer intercepts the TCP
3-way handshake in the dataplane. Flowtamer measures the per-flow
RTT in the dataplane by using a modified version of Dart [14]. After
the new rwnd (as decided by the CCA) is applied to the packets,
Flowtamer uses properties of 1’s complement arithmetic to recom-
pute the TCP checksum without accessing the payload.

Scalability. Although Flowtamer requires per-flow state, our key
insight is that we do not need to maintain this state for short flows that

'While receiver-based rwnd adjustment has been previously used to limit bufferbloat
in cellular networks [10], it does not work in the Internet context where the buffer is
shared by thousands of flows.

ReceiverRwnd (20ms) ]
ReceiverRwnd (40ms) 4
AlgoRwnd - --- |

A A n A

Throughput (20ms)
Throughput (40ms)

Mbps
(=]
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)

Figure 2: BBRv1 flows (20 ms, 40 ms) on a 100 Mbps bottleneck
link with a PoC in-network CCA (§2.1).

last just an RTT. In the 2019 CAIDA Internet traces [4], we found
that only 10% of the flows are longer than 10 packets (equivalent
of initial cwnd) and 95% of the flows last for less than 10 seconds.
We ran a simulation on these traces and found that we need only
enough state for at most 65K flows if we tracked only the long flows
(>10 pkts) and evicted the state for flows that were inactive for 10
seconds. We use this insight to maintain state for a limited number
of flows in the dataplane. For the evicted flows’ state, we implement
a backing store in the control plane DRAM.

Implementation. Flowtamer is implemented on an Intel Tofino
switch using 1K lines each of P4 and C++ code. To facilitate a fast
channel between the data and control planes for per-flow states, we
use DPDK over two 10G switch-local interfaces between the two
planes.

2.1 Proof of Concept (PoC) CCA

As a proof of concept, we implemented a simple threshold-based
CCA in ~14 lines of C++ code. The algorithm’s rwnd (AlgoRwnd) is
initialized to a very high value (~2 MB). In each round, if the current
queue size is greater than 250 KB, we reduce the AlgoRwnd by half.
If the queue size falls below 25 KB, we increase it by 1500 B. The
AlgoRwnd is updated in the dataplane at the end of each round. Every
time the dataplane sees an ACK packet, it scales the AlgoRwnd by
that flow’s RTT and WS, and writes it to the packet’s TCP window
field. Figure 2 shows that this simple scheme is sufficient to alleviate
RTT unfairness between two BBR flows.

3 DISCUSSION AND FUTURE WORK

Flowtamer runs on an individual switch without requiring any coor-
dination with other switches and thus can be deployed incrementally.
It is a work-in-progress and future work includes allowing the CCA
to dynamically change the round duration, improving per-flow state
management, estimating the number of concurrent flows, and han-
dling SYN-flood attacks. Flows with asymmetric paths also pose a
challenge to our methodology. Since our solution is rwnd-based, it
also remains to be seen how our approach can be adapted for QUIC.
When complete, we hope that Flowtamer would enable the efficient
and scalable realization of future in-network CCAs such as RCS [3].



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6

[7

[8]

R. Al-Saadi, G. Armitage, J. But, and P. Branch. A survey of delay-based and
hybrid tcp congestion control algorithms. IEEE Communications Surveys &
Tutorials, pages 3609-3638, 2019.

A. G. Alcoz, A. Dietmiiller, and L. Vanbever. SP-PIFO: Approximating push-in
first-out behaviors using strict-priority queues. In Proceedings of NSDI, 2020.

L. Brown, G. Ananthanarayanan, E. Katz-Bassett, A. Krishnamurthy, S. Rat-
nasamy, M. Schapira, and S. Shenker. On the future of congestion control for the
public Internet. In Proceedings of HotNets, 2020.

CAIDA. Anonymized Internet Traces 2019. https://catalog.caida.org/dataset/
passive_2019_pcap.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson. Bbr:
Congestion-based congestion control: Measuring bottleneck bandwidth and round-
trip propagation time. Queue, pages 20-53, 2016.

N. Cardwell, Y. Cheng, S. H. Yeganeh, P. Jha, Y. Seung, K. Yang, I. Swett,
V. Vasiliev, B. Wu, L. Hsiao, et al. Bbrv2: A model-based congestion control
performance optimization. In Proceedings of IETF 106th Meeting, 2019.

S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on networking, pages 397-413, 1993.

M. Hock, R. Bless, and M. Zitterbart. Experimental evaluation of bbr congestion
control. In Proceedings of ICNP, 2017.

91
[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]

V. Jacobson and M. J. Karels. Congestion avoidance and control. In Proceedings
of SIGCOMM, 1988.

H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G networks.
In Proceedings of IMC, 2012.

Y.-T. Li, D. Leith, and R. N. Shorten. Experimental evaluation of tcp protocols for
high-speed networks. IEEE/ACM Transactions on networking, pages 1109-1122,
2007.

R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows at the
congested router. In Proceedings of ICNP, 2001.

A. Mishra, L. Rastogi, R. Joshi, and B. Leong. Keeping an eye on congestion
control in the wild with nebby. In Proceedings of SIGCOMM, 2024.

S. Sengupta, H. Kim, and J. Rexford. Continuous in-network round-trip time
monitoring. In Proceedings of SIGCOMM, 2022.

N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approximating fair
queueing on reconfigurable switches. In Proceedings of NSDI, 2018.

R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry. Beyond Jain’s Fairness
Index: Setting the bar for the deployment of congestion control algorithms. In
Proceedings of HotNets, 2019.

R. Ware, M. K. Mukerjee, S. Seshan, and J. Sherry. Modeling bbr’s interactions
with loss-based congestion control. In Proceedings of IMC, 2019.

L. Yu, J. Sonchack, and V. Liu. Cebinae: scalable in-network fairness augmentation.
In Proceedings of SIGCOMM, 2022.


https://catalog.caida.org/dataset/passive_2019_pcap
https://catalog.caida.org/dataset/passive_2019_pcap

	1 Introduction
	1.1 In-Network Solutions to Internet Congestion Control
	1.2 The Case for an rwnd-based Solution

	2 Flowtamer
	2.1 Proof of Concept (PoC) CCA

	3 Discussion and Future Work
	References

