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Approach 3: LLMs for feedback Approach 4: LLMs (fix + feedback)

LLM for fix generation, and feedback
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Testcase for error detection, with LLM
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Testcase for error detection and
diagnostic feedback
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Results: Coverage
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Concrete Example

1 def convertl6Bit(decimal): # Category Feedback

2 s = '"{0:b}'".format(decimal)

3 s = s.zfill (16) 2  False Positive  Use "0:016b" instead of

4 print(s) (Extra) "0:b". This will automati-

cally pad the binary number
with leading zeros to make it

# Category Feedback 16 bits.
1  False Positive  The function definition is 4 True Positive  In Python, functions should
(Hallucination) missing a colon (:) at the return their result for use
end elsewhere 1n the program.
4 True Positive  Instead of printing the re- Replace "print(s)" with "re-
sult, you should return it. turn s"
(a) Feedback by GPT-3.5T (b) Feedback by GPT-4
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Results: Quality

Iteration Model Recall Miss Precision False Positive Rate (FPR)
(TPR) (FNR) (PPV) Extra Invalid Hallucination
Single  GPT-3.5T | 52.7% 47.3% 512% 15.77% 15.0% 18.0%
Single GPT-4 84.0% 16.0% 72.0% 14.8% 9.0% 4.1%
Multiple GPT-3.5T | 53.1% 46.9% 514% 152% 16.5% 16.9%
Multiple GPT-4 87.2% 12.8% 72.4% 14.4% 7.7% 5.4%
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Future Work

1. Large scale user study evaluate its real-world usability, in terms of
pedagogical effectiveness on student’s learning outcomes and teacher’s

grading process.

2. Evaluate on qualitative attributes such as informativeness and
comprehensibility.

3. Exploring the effectiveness of our techniques for college level CS1 course.
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Repair@k Coverage Metric for GPT-3.5T and GPT-4
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To assess the reliability, we manually categorized GPT generated feedback into

) - Precision Recall
following 5 categories: o
Reliability Coverage

True Positive Valid feedback is generated

False Negative Failed to detect the error and generate feedback

False Positive (Extra) Unnecessary feedback, e.g., Optimization

o )
False Positive (Invalid) Incorrect feedback generated GPT 4 72. 6/0 84. 6/0
False Positive (Hallucination) Fabricated feedback (unrelated to the code) is
generated.
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Table 1: Feedback quality of GPT-3.5T and GPT-4 LLMs,
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Figure 2: Comparing repair accuracy of GPT-3.5T and
GPT-4 after k interactive iterations

False Positives
Invalid Hallucination

based on manual assessment by authors.
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To assess the reliability, we manually categorized GPT generated feedback into

) - Precision
following 5 categories: o
Reliability
True Positive Valid feedback is generated
False Negative Failed to detect the error and generate feedback
False Positive (Extra) Unnecessary feedback, e.g., Optimization
o
False Positive (Invalid) Incorrect feedback generated GPT 4 72. 6/0
False Positive (Hallucination) Fabricated feedback (unrelated to the code) is
generated.
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Recall
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Figure 2: Comparing repair accuracy of GPT-3.5T and
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Table 1: Feedback quality of GPT-3.5T and GPT-4 LLMs, based on manual assessment by authors.
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