
Teaching Introductory Programming as an Online Game
Ben Leong, Zi Han Koh, and Ali Razeen

Department of Computer Science
National University of Singapore

September 2011

ABSTRACT
This paper describes how we successfully built a“game layer”
over a traditional Scheme-based introductory programming
module, by adding a game storyline and introducing game
mechanics like experience points and achievements as re-
wards for completing assignments. In the process, we also
introduced a feed-based system to allow students to discuss
their assignments with the teaching staff in a conversational
manner, and a self-paced learning system called Paths, which
allows students to do auto-graded exercises after each lec-
ture. 71% of the students found that our new approach
made the course much more interesting compared to “tradi-
tional” courses, and the average submission times for assign-
ments improved from less than one day (15.5 hours) before
the deadline, prior to the introduction of the game layer, to
more than 2 days (51.2 hours) before the deadline.

1. INTRODUCTION
While most students are taught Java as their first pro-

gramming language at our college, we also offer students the
option of learning Scheme. Typically, about 50 to 60 of the
incoming 400 freshmen for our faculty will choose to take the
Scheme module CS1101S, which follows closely to the MIT
Scheme course based on the SICP [1]. The relatively small
number of students enrolled in the course provides us with
an opportunity to experiment with new ways of teaching
introductory programming at the freshmen level.

In this paper, we describe how we managed to improve
the engagement of our students by implementing a game
layer, which motivates them to work consistently and allows
us to quickly identify gaps in their understanding of the
material, in Fall 2010. The course is being taught in Fall
2011 (in progress) with an improved version of the game
system. The inspiration of our approach comes from the
TED Talk given by Jane McGonigal [8], where she suggested
that game mechanics can allow us to better engage the new
generation of students who have grown up playing games.

To create this system, which we call JFDI Academy, the
seven problem sets for the module were broken up into 22
“missions” which were framed around a storyline in a “Star
Wars”-based universe. Students were required to complete
these missions as assignments. Experience points were awarded
for the completion of these assignments and also for (i) at-
tempting bonus questions (called side quests), (ii) attending
lectures, recitations and tutorials, and (iii) participating in
the course online forum and online surveys. The general idea
is to reward students for positive behaviors. Once a student
gains sufficient experience points, he will “level up” and this
is reflected in a leaderboard. The system is also linked to
Facebook via Facebook Connect and feeds are posted onto
Facebook when students level up or unlock certain achieve-

ments in the game. The final level attained by the students
is used as the continual assessment grade for the course.

In addition to the game system, we introduced two fea-
tures to improve the pedagogical process. First, we imple-
mented a feed-based system to allow students to discuss their
assignments with the teaching staff in a conversational man-
ner similar to the comments on Facebook feeds. This helps
them receive timely and meaningful feedback about their
work. Second, we added a self-paced learning system called
Paths, which allows students to attempt a set of auto-graded
exercises after each lecture. Not only does this help students
reinforce concepts taught during the lecture, it also provides
the teaching staff with an overview on how well the students
are doing and highlights the concepts that are unclear to the
students.

We evaluated the effectiveness of the system with sur-
veys and also compared the behavior of the students under
the new game system to that of previous cohorts. A ma-
jority (71%) of the students found that it made the course
much more interesting compared to “traditional” courses.
The game layer was also effective in encouraging students
to submit their assignments earlier and average submission
times were improved from less than one day (15.5 hours)
before the deadline to more than 2 days (51.2 hours) before
the deadline.

The key difference between our work and previous ap-
proaches of using games to teach introductory programming
is that the game system is simply a layer on top of the
course. Students do not implement a game using Scheme
nor do they learn Computer Science concepts using games.
The SICP text remains unadulterated and students continue
using Scheme to learn and work on their assignments. It is
possible for a student to complete the course and ignore the
game component.

2. COURSE OVERVIEW
Before we proceed to describe the innovations that we

introduced, it would be appropriate to first describe and
explain the organization and conduct of CS1101S. CS1101S
is offered only in the Fall semester of each academic year.

The course is taught over a period of 13 weeks with a
one-week midterm break after Week 6. An overview of the
topics covered in the course is shown in Table 1. Only 10
weeks are spent covering content from the SICP [1]. The
last three weeks are spent introducing the students to Java
in preparation for the course on data structures they would
take in the subsequent semester, which is taught in Java.
The focus of the Java component is mostly on the syntax
and ensuring that they can successful “port” their solutions
for problems in Scheme to Java.

Students have 3 hours of lecture weekly, consisting of a 2-



Table 1: Topics Covered

Week(s) Topic SICP
1–2 Procedural Abstraction §1.1–1.2

& Recursion
3 Higher-Order Procedures §1.3

4-5 Data Abstraction §2.1–2.3
6 Generic Operators §2.4–2.5
7 Midterm Exam
8 State & Object-Based §3.1–3.3

Abstractions
9 Memoization & Dynamic §3.5

Programming
10 Streams & Lazy Evaluation §4.2
11 Practical Exam

12-13 Java Programming -

hour lecture on Wednesday and a 1-hour lecture on Friday.
They also attend a 1-hour weekly recitation taught by either
the lecturer or a senior teaching assistant, where they are
shown how the concepts covered in lecture can be applied
to solve relatively simple problems. Finally, they attend a
two-hour tutorial weekly to discuss more complex problems
in small groups of 6 to 7 students led by an undergraduate
tutor.

Traditionally, students have to complete 7 problem sets
which constitute 30% of the final grade. They also have to
take a midterm exam, a practical exam and a final exam,
which together constitute 60% of the final grade. The re-
maining 10% is awarded based on class participation. Be-
cause CS1101S is not the mainstream introductory program-
ming module, but an accelerated elective module that is typ-
ically taken by stronger and more motivated students, the
students are not graded on a curve.

Students can get help by attending office hours or, more
commonly, by posting questions in the course discussion fo-
rum, which tends to be quite active. Depending on the
semester, there can be up to 3,000 posts over a 13-week
semester. A large number of past year exams, together with
their solutions, are also made available to the students on-
line.

2.1 New Game System
The key innovation that we made to the course in Fall

2010 is the introduction of a game system to replace the 7
problem sets, that were typically issued in the past years,
with 22 “missions” (See Table 2). One problem that we pre-
viously observed was that students tended to procrastinate
and some students started on their problem sets one or two
days before the deadline. Because students typically took
between 10 to 30 hours to finish each problem set, starting
late was often a bad idea for many of them. By dividing
each problem set into 3 or 4 smaller “bite-sized” missions
and having them due more frequently, it helps students to
manage their time.

The experience points that students are awarded for each
mission depends on the correctness of the answer submit-
ted. In this way, the game system also introduces an ele-
ment of peer pressure and competition. Many students play
online games and are used to the idea of a leaderboard and
achievements. By casting the assignment into the form of
an online game, many students were encouraged to submit

Table 2: Missions

Week(s) Missions Topic
1–2 1–3 Procedural Abstraction
3–4 4–7 Higher-Order Procedures
5–6 8–11 Data Abstraction
7 12–15 Generic Operators

8–9 16 Lego Mindstorm Robot
10–11 17–19 Object-Oriented Programming
12–13 20–22 Streams

their solutions earlier so as to get onto the leaderboard. The
leaderboard only shows the levels of the top 15 players. This
is to avoid embarrassing the weaker students at the bottom.

While we had optional problems in the previous problem
sets, many of them were often ignored. Under the new game
system, these optional problems are called side quests. One
goal of the side quests was to reduce the pressure on the
students to get their answers completely right in the main
missions by providing them with a way to make up for the
lost experience points. Another goal is to provide students
with opportunities for additional practice while keeping the
additional work optional.

Timely feedback is very important for effective learning.
We have two mechanisms in place to improve the feedback
loop. First, while assignments were typically graded as a
batch only after the due date, we do it differently under the
new game system. Individual assignments can be graded
as soon as they are submitted, and our policy is to have
all assignments graded within 24 hours after submission.
Students submit their assignments online and their tutors
are immediately notified via email. Once an assignment is
graded, the students will be notified via emails and also via
in-game notifications. Next, each mission page also includes
a section where the students can interact with their tutors
by posting comments like those on Facebook feeds to seek
clarification and discuss their assignments with the teaching
staff.

2.2 Paths
To reinforce the concepts taught during lectures, a stu-

dent has to practise and apply the concepts. While students
are expected to do this in their assignments and tutorials,
the assignments and tutorials tend to lag behind lectures
by more than a week. If the student only starts to apply
the concepts taught in lecture after a long delay, more ef-
fort is required on the part of the students to recall what
was taught. Students also often have difficulty identifying
the key concepts taught in the lecture, especially if several
concepts are presented in the same lecture and in different
examples. To address these issues, we implemented a self-
assessment system called Paths.

Paths string together a series of questions, which we call
steps, that students must complete in sequence so as to com-
plete a path. The steps in a path may either be multiple-
choice questions (MCQ), or more general coding questions
where automated public and private test cases are run to
verify the students’ answers. The MCQ steps provide stu-
dents with feedback when the wrong choices are made, and
students are expected to keep attempting the question until
they get it right. Coding steps, on the other hand, are op-
portunities for students to practise writing code. We display



the results of running the submitted solutions on public test
cases to help students check their answers.

The path engine described above supports two different
kinds of paths: (i) post-lecture paths and (ii) post-tutorial
paths. Post-lecture paths consists of 8 to 10 steps that pro-
vide ample guidance and let students review concepts and
any new syntax covered in lectures. These paths are meant
to be completed within 2 days after the lecture, when the
content is still fresh in the students’ minds. To encourage
students to attempt these paths promptly, we award bonus
experience points for completing a post-lecture path early.

Post-tutorial paths are made available only after the asso-
ciated assignment and tutorials are over. These paths test
mastery of the material and little guidance is provided. As
these paths are optional, students only unlock achievements
for completing them and are not awarded any experience
points for them. Despite the lack of direct incentives, over
90% of the students have attempted and completed post-
tutorial paths.

3. IMPLEMENTATION
It was decided that the story would be a scifi adventure

set in a “Star Wars”-like universe, narrated in a third-person
perspective. Converting the problem sets into missions that
fit into the plot points of the story was not as challenging as
expected, since even in past years, each problem set usually
had its own story to make it more interesting. For exam-
ple, the third problem set where students learn about data
abstraction had a story on cracking the RSA encryption sys-
tem of an antagonist. This problem set was naturally split
into Missions 8 to 11, where students hack the system of the
villain in our story.

The JFDI Academy website was implemented with a
PHP/MySQL backend on an Apache webserver and uses
Javascript to support the interactive features. The comics
were drawn by a freelance artist and the final comic consisted
of 30 comic strips, with an average of 20 panels per strip.

3.1 Brief Synopsis of Game Storyline
Students follow the adventures of Lea, Kaz, and Zed, three

initiates who have entered the JFDI academy to learn the
ways of the“Force”. While training under the tutelage of the
Grandmaster, the three initiates uncover a plot by Darth,
the evil Dark Lord, to destroy the academy. After frantically
warning the Grandmaster, they hack the encryption system
of the Dark forces, and delay Darth’s plans by sending him
false messages.

Meanwhile, the Grandmaster calls a council meeting with
other Grandmasters to discuss the threat. After much de-
liberation, they decide to launch a counter-attack on the
Death Cube, the primary battle station of the Dark forces
commanded by Darth himself. Lea is first tasked with dis-
abling the powerful shield that is protecting the Death Cube.
Leading the initiates, she infiltrates the Death Cube and
overloads the generator powering the shield. With the shield
inactive, the council commands a fleet of attack ships to con-
centrate fire on the Death Cube and destroys it. However,
Darth narrowly escapes the attempt on his life and goes into
hiding.

The Grandmaster, sensing greater challenges ahead, teaches
his initiates his ultimate skill and disappears into the Force.
He leaves them a set of coordinates to find the next Grand-
master. Sad about the Grandmaster’s disappearance, the

Figure 1: Screenshot of home page (student view).

initiates journey to the given coordinates, only to find that
it leads to a middle of a lake. Seeing their own reflections
on the lake, they realize that they have become to their own
Grandmasters to master the Force and defeat Darth.

3.2 User Interface
When a student logs in to the game website, he will see a

home page similar to that shown in Figure 1. On the left,
he can quickly see his current level, the experience points
he needs to progress to the next level, and important no-
tifications. The navigation bar on the top lets him access
other portions of the website, such as the missions. General
class announcements are shown in the center and there is
also a “Notable Happenings” section on the bottom, which
contains notable student activity (such as when someone is
first to submit a mission).

A screenshot of the staff view is shown in Figure 2. As
with the student view, there is a notification panel on the left
that alerts the tutor that his students have either submitted
an assignment or have left comments on the feed system.
The staff view additionally contains a navigational bar that
allows the teaching staff to access the administrative func-
tions of the website.

On both the student and staff views, there is partially
occluded comic section in the center. When clicked, this
section expands into a full-sized frame like the one shown
in Figure 3. Each panel within a comic strip is a separate
image and the user can scroll through the comic. This ap-
proach allows us to simulate animation in the comic without
having to use Flash (or other full-featured animation tools).
Students typically have access to a limited number of pan-
els. More panels are unlocked as missions are completed.
In this way, the comics also serve as a form of reward for
completing missions.

In Figure 4, we show a mission page where the student
has already submitted his work. The details and files of



Figure 2: Screenshot of home page (staff view).

the mission are located on top while the student’s code is
placed in the center. Notice that the tutor has added an
annotation to line 52 of the student’s code. The feed system
at the bottom is then used by both the tutor and his student
to discuss the highlighted mistake.

The progress of the students in completing the paths is ac-
cessible in the “Path Statistics” view shown in Figure 5. The
history of all the answers submitted to the system (including
wrong ones) is captured and this allows the teaching staff to
see the common mistakes that are made by the students and
to intervene when a student is “stuck.”

Achievements are unlocked after completing certain mis-
sions, side quests, and for accomplishments such as receiving
perfect grades for six missions in a row. The achievement
page is shown in Figure 6. Each achievement is also as-
sociated with a number of achievement points. These are
separate from experience points and are not used in com-
putation of students’ grades. They are used to rank the
students in the leaderboard.

3.3 Facebook Integration
When students level up or unlock an achievement, they

have the option of publishing a feed to their Facebook ac-
count. Figure 7 shows two examples of feeds published by
our students. These feeds let students show off their learn-
ing progress to their friends. We believe that this generates
a “feel good” effect and provides positive feedback to the
students.

4. EVALUATION
To evaluate the effectiveness of the new game system, we

conducted a brief survey in the middle of the semester and
a more detailed survey at the end of the semester. We also
compared some metrics recorded during the semester to met-
rics for the course when it was taught in previous years.

The following are some brief findings from our surveys:

Figure 3: Screenshot of sample comic panel.

• Game System. 76% of the 51 students who responded
found the game system to be helpful to their learning.
Most of the students said that the game system made
learning more interesting. They also commented that
the system helped to promote sustained and continu-
ous learning throughout the semester. Some students
appreciated doing the assignments in “small chunks”
as missions instead of large infrequent problem sets.

• 24-hour Grading. 64% said that the 24-hour grading
was helpful to their learning. Most of the students
remarked that it was extremely helpful to be provided
with timely feedback. A small number remarked that
a grading turnaround time of 48 to 72 hours would
have been good enough.

• Improved Interactions. 82% agreed that mission
feeds helped to improve their interactions with the
teaching staff. A small number however did not use the
mission feeds to discuss assignments with the teaching
staff and preferred to discuss the assignments offline
with their peers.

• Game Elements Improved Motivation. When
asked which features of the game system encouraged
them to finish their assignments, 71% said that the
concept of levelling up was helpful. 33% said that the
leaderboard and achievements were important moti-
vations. We suspect that these are the regular gamers
among the students.

• Path System is Effective in Reinforcing Lec-
tures. The students unanimously agree that paths
are helpful and add value to their learning, with 55%
of students strongly agreeing so. Likewise, all students
unanimously agree that that lecture paths help to rein-
force the concepts taught during lectures, with a larger
majority (61%) strongly agreeing so. 78% felt that
other modules should also adopt post-lecture paths
even though this would increase their workload.

The assignments for CS1101S have always been submitted
online. When compared to past years, the students tended



Figure 4: Screenshot of a mission feed.

to submit their assignments much earlier after the introduc-
tion of the game system. The average assignment submission
time was improved drastically, from less than one day (15.5
hours) before the deadline to more than 2 days (51.2 hours)
before the deadline.

Our college conducts a standard teaching survey (on a 5-
point scale) at the end of each semester. The module and
teacher ratings for CS1101S over the past 4 years is shown
in Figure 8. The course was taught by the same instructor
for all 4 years. It seems that the introduction of the game
system in Fall 2010 had a positive impact on the module
rating. It however had no noticeable impact on the teacher
rating.

The course is not graded on a curve. Students are graded
based on their demonstrated ability and effort is made to
ensure that the same standards are preserved across years.
From the the distribution of the final grades of the students
over the past 4 years, we found that the students seem to
perform marginally better last academic year (Fall 2010)
compared to previous years. This suggests that the game
system is helpful in improving the effectiveness of our teach-
ing, though we would have to admit that this data is not
entirely conclusive since we are not able to control for the
intrinsic aptitude of the students between cohorts.

4.1 Drawbacks
A drawback with our approach is that some students feel

more stressed as they feel they have a lot of deadlines to
meet and a lot of assignments to submit, even though they
have a similar amount of work as students who took the
course in previous years. This perception problem might

Figure 5: Screenshot of path statistics.

overwhelm some students. In our course, we address this by
encouraging students to start and submit assignments early.

Another drawback with our approach is that there is a
very large upfront cost of implementing the system, includ-
ing preparing the storyline, comics, missions and side quests.
However, this is a one-time cost as the system can be reused
in subsequent semesters.

While our approach works very effectively for CS1101S,
which typically only has 50 to 60 students per semester, it
is not entirely clear if this approach is scalable for a large
course with hundreds of students because the system re-
quires a lot of manpower to execute. We suspect it would
be feasible if we maintained the current student-to-tutor ra-
tio so that it remains small. We leave it as future work to
explore the issue of scalability.

5. RELATED WORK
The game layer was introduced to address the problem

of procrastination in the completion of assignments. We
also wanted to better engage students in their learning [5].
Our path system is similar to Singpath [2], an online system
that was developed to teach Python programming in a self-
directed way.

Existing approaches in using games to teach introductory
computer programming revolve around delivering the mate-
rial using games [6, 4], or by teaching students to develop
games using tools such as Flash and Alice [7, 3]. Our game
system differs from these approaches in that the technical
material is not taught via a game. Rather, the game layer
was designed to improve student engagement and motiva-
tion for learning. Under the new game system, students
have numerous opportunities to reinforce their understand-
ing, and they receive quick and detailed feedback on their
assignments. Nevertheless, like in previous years, students
continue to work in Scheme on their assignments and to
learn concepts such as recursion.

6. CONCLUSION
In this paper, we described how we successfully imple-

mented an approach to “gamify” a traditional introductory
programming module. Many students appreciate this new



Figure 6: Screenshot of sample achievements.

approach and found that it made learning more interesting,
but a small number did not find it helpful. Our approach is
interesting because such students can effectively ignore the
game component and still complete the course successfully.
While we have found that the game layer can significantly
improve student engagement, we would like to highlight that
teaching is still fundamentally a human activity. Effort still
needs to put into traditional modes of instruction like lec-
tures and tutorials for our approach to be effective.

7. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, Mass., USA, 2nd edition, 1996.

[2] C. Boesch. Singpath. http://www.singpath.com.

[3] S. Cooper, W. Dann, and R. Pausch. Teaching
objects-first in introductory computer science. In
Proceedings of SIGCSE ’03, February 2003.

[4] M. Eagle and T. Barnes. Experimental evaluation of an
educational game for improved learning in introductory
computing. In Proceedings of SIGCSE ’09, March 2009.

[5] P. Eggen and D. P. Kauchak. Educational Psychology:
Windows on Classrooms. Prentice Hall, 8th edition,
2009.

[6] A. Hicks. Towards social gaming for improving
game-based computer science education. In Proceedings
of FDG ’10, June 2010.

[7] S. Leutenegger and J. Edgington. A games first
approach to teaching introductory programming. In
Proceedings of SIGCSE ’07, March 2007.

[8] J. McGonigal. Gaming can make a better world, March
2010. TED.com,
http://blog.ted.com/2010/03/17/gaming can make/.

Figure 7: Sample Facebook feeds.

 3

 3.5

 4

 4.5

 5

 2007  2008  2009  2010

S
tu

de
nt

 fe
ed

ba
ck

 r
at

in
g

Year

Module
Teacher

Figure 8: End-of-semester course feedback ratings.


