
Complete Join Reordering for Null-Intolerant Joins
TaiNing Wang

Department of Computer Science
National University of Singapore

taining wang@u.nus.edu

Yunpeng Niu
miHoYo Inc.

niuyunpeng@u.nus.edu

Chee-Yong Chan
Department of Computer Science
National University of Singapore

chancy@comp.nus.edu.sg

Abstract—
The join reordering problem is a core task in query opti-

mization to find the most efficient evaluation order for join
operations. The Enhanced Compensation-based Approach (ECA)
is the state-of-the-art approach for this problem which is based
on using new operators called compensation operators to en-
large the query plan search space with more join reorderings.
However, ECA cannot provide complete join reorderability for
queries involving one or more full outerjoins. In this paper,
we present the first complete join reordering solution, named
CJR. By introducing a new and more expressive compensation
operator and an enhanced set of rewriting rules, CJR is able
to provide complete join reorderability for all join queries with
null-intolerant join predicates. Our experimental results on the
Join Order Benchmark demonstrate that CJR can improve query
performance by a factor of 12.32.

Index Terms—Query optimization, outerjoin, join reordering

I. INTRODUCTION

Finding an efficient evaluation order for the join operations
in a query is crucial in join query optimization. This is also
known as the join reordering problem which has been studied
extensively over the years (e.g., [1]–[13]). Join reordering
for inner join queries is straightforward since inner joins are
associative and commutative. However, it is significantly more
difficult to reorder complex join queries involving outerjoins
and/or antijoins.

Consider the query Q = R1
p12◦x (R2

p23◦y R3), where each
pij◦t represents a join operation ◦t between Ri and Rj using
the join predicate pij . Clearly, if both the join operations
are inner joins, then the query Q is fully reorderable in the
sense that the two join operations in Q can be evaluated in
any order. This fully reorderability property is due to the
commutativity and associativity of inner joins. However, if
a query involves outerjoins, its join reorderability generally
becomes more limited. As an example, consider the query
Q1 = R1

p12

�� (R2
p23
�� R3)

1. Note that Q1 can not be reordered
to an equivalent query that first join R1 and R2 followed
by joining R2 and R3. That is, Q1 is not equivalent to
Q2 = (R1

p12◦x′R2)
p23◦y′R3 for any combination of join operations

This research is supported by the National Research Foundation, Singapore
under its AI Singapore Programme (AISG Award No: AISG-GC-2019-001-
2A). Yunpeng Niu’s work was done while he was a student at National
University of Singapore.

1In this paper, we use
pij
�� ,

pij
�� ,

pij
�� ,

pij
� , and

pij
� to denote respectively, the

left outerjoin, right outerjoin, full outerjoin, left antijoin, and right antijoin
between two join operands Ri and Rj using the the join predicate pij .

◦x′ and ◦y′ ; i.e., Q2 is an invalid transformation of Q1 that
does not preserve equivalence. TBA [7] is the state-of-the-art
transformation-based approach that generates join reorderings
based on valid transformations using the associativity and
commutativity properties of join operators.

To enable more join reorderings and hence enlarge the
query plan space for optimization, [11] introduced the idea of
query rewriting using additional operators called compensation
operators to produce equivalent query plans with different
join reorderings. This approach is referred to as CBA (for
Compensation-Based Approach) in [14]. Continuing with the
above example of Q1, by using additional compensation
operators β and λ, the join operations in Q1 can be re-
ordered to produce the following equivalent query Q′

1 =

β(λp23,R2((R1

p12

�� R2)
p23

�� R3)). CBA is able to provide
complete join reorderability for queries involving inner joins,
semijoins, and/or single-sided outerjoins.

The state-of-the-art approach for reordering joins is ECA
(for Enhanced Compensation-based Approach) [14]. ECA has
further enhanced CBA with two additional compensation op-
erators as well as new rewriting rules that enable complete
join reorderability for an even larger class of queries that
include antijoins as well. For example, consider the query
Q2 = R1

p12
� (R2

p23

�� R3). Reordering of joins in Q2 is not
possible in CBA, but ECA can rewrite it to an equivalent query
Q′

2 = πR1(γR2((R1

p12

�� R2)
p23

�� R3)) using the new operator
γ. Although ECA is an improvement over CBA, ECA still does
not provide complete join reorderability for all join queries:
specifically, not all join reorderings are possible for queries
with full outerjoin.

In this paper, we present the first complete solution to the
join reorderability problem for null-intolerant joins2. Specif-
ically, we propose a new, comprehensive approach termed
CJR (for Complete Join Reordering) that provides complete
join reorderability for all join queries (i.e., queries with
any combination of inner/semi/anti-joins and single-sided/full
outerjoins). CJR is also a compensation-based approach that
is based on a new compensation operator (τ) and the β and λ
compensation operators from [11].

For example, consider the query Q3 = R1

p12

�� (R2
p23
�� R3)

where its join operations cannot be reordered using ECA

2Null-intolerant joins have null-intolerant join predicates. A predicate is
classified as null-intolerant if it cannot evaluate to true when referencing a
null value; otherwise, it is considered to be null-tolerant.

or any existing approach due to non-associativity of full
outerjoin. However, our approach CJR can reorder Q3 to
β(λR3 not null,R2((R1

p12

�� R2)
p23

�� R3)). A fundamental dif-
ference between ECA and CJR is that ECA adopts a forward-
based approach of rewriting complex join operators which first
expresses a more complex join operator in terms of simpler
join operators and performs reordering of the simpler opera-
tors. While such an approach works for reordering antijoins, it
is not applicable for reordering full outerjoins. In contrast, CJR
derives rewriting rules for full outerjoins via a backward-based
approach; more details are discussed elsewhere [15]. Full
outerjoin is an important class of join operations that is widely
used in many traditional and modern applications to preserve
information including data warehousing, data integration, and
schema mapping [11], [16], as well as probabilistic databases
[16]–[18] and graph data processing [19], [20].

We summarize our contributions as follows. First, we
propose a compensation-based join reordering approach with
a new compensation operator (Section III). We derive the
complete set of rewriting rules for reordering full outerjoins
and other join operators, and also rewriting rules for pulling
up compensation operators above join operators. With these
rewriting rules, our approach is the first to achieve complete
join reorderability for all join queries (involving any combi-
nation of inner joins, one-sided/full outerjoins, and antijoins)
with null-intolerant joins. Our approach strictly supersedes all
existing approaches in terms of reorderability regardless of
whether the join predicates are null-intolerant or null-tolerant.

Second, we extend CBA’s SQL-level implementation tech-
niques for the β operator to support queries involving full
outerjoins, by redefining a key concept called nullification sets
on a tuple basis, and providing a sound algorithm to compute
the sorting order used for implementing β based on the new
definition (Section IV).

Third, we demonstrate the effectiveness of the our complete
join reordering rewriting rules with an experimental evaluation
on the Join Order Benchmark and TPC-H Benchmark datasets.
Our results show that with the enlarged query plan search
space enabled by our approach, the query performance can be
improved by up to a factor of 12.32 (Section V).

II. BACKGROUND

A. Notations

We use Ri

pij◦aRj to denote a join operation with join operator
◦a and join predicate pij that refers to join operands Ri and
Rj . Note that the subscript a and/or join predicate pij may be
dropped from the join operator if not needed.

For notational convenience, we may use set operations on
relations to specify a set/list of attributes. For example, the
expression R1 ∩ R2 in πR1∩R2(R1

p12
�� R2) denotes the list

of attributes that are common to relations R1 and R2, and
A ⊆ R1 or A ⊆ attr(R1) indicates that A is a subset of the
attributes of R1.

1 null 3 4 5
1 null 3 null 5

Fig. 1: Example of dominated tuple

B. Compensation-based Approaches

In this section, we provide an overview of the two
compensation-based approaches (i.e., CBA [11] and ECA [14])
for join reordering.
CBA uses two unary compensation operators λp,A and β.

The first operator, λp,A(R), is known as the nullification
operator. Given a selection predicate p on a relation R and
a subset of attributes A of R, λp,A(R) returns all the tuples
in R such that for each tuple t ∈ R, if p evaluates to true
on t, then t remains unchanged; otherwise, all the values of
attribute Ai ∈ A of t will be set to null. That is,

λp,A(R) = σp(R)∪{t ∈ R−σp(R)| t.Ai = null ∀ Ai ∈ A}.
The predicate p is referred to as a nullification predicate and A
is referred to as nullification attributes. We say that λp,A(R)
nullifies A if p does not evaluate to true.

The second operator, β(R), which is known as the best-
match operator, returns all the non-spurious tuples in R. A
tuple t ∈ R is a spurious tuple if t is a duplicated tuple or
if t is dominated by some other tuple in R. Given two tuples
t, t′ ∈ R, t is dominated by t′ if for every non-null attribute
value in t, t′ has the same value in the corresponding attribute,
and t has more attributes with null values than t′. For example,
in Figure 1, the first tuple dominates the second tuple. If we
apply β to the table, the second tuple will be eliminated.

With the compensation operators, the join operators can be
expressed in a canonical form that corresponds to computing
a outer cartesian product3 (denoted by

◦×), followed by a
nullification operation λ and a best-match operation β:

R1
p12
�� R2 = β(λp12,R1∪R2(R1

◦× R2))

R1

p12

�� R2 = β(λp12,R2(R1

◦× R2))

By deriving new rewriting rules to enable the compensation
operators to be pushed down into (or pulled up from) relational
expressions, CBA is able to reorder joins in a query by first
rewriting the query into the above canonical form, reordering
the cartesian product operations, and rewriting the reordered
expression in terms of join operators whenever applicable. An
example is illustrated in Section I with Q1 being rewritten into
an equivalent query Q′

1 with the join operations reordered.
To support join reordering for queries with anti-join(s),

ECA introduced two more compensation operators, γ and γ∗.
γA(R) is defined as γA(R) = {r ∈ R | r.A is null}, and
γ∗
A,B(R) is defined as γ∗

A,B(R) = β(γA(R) ∪ R′), where
R′ = λfalse,attr(R)−B(R − γA(R))). γ∗

A,B(R) is similar to

3The outer cartesian product operator
◦× preserves tuples from non-empty

relations; i.e., R
◦× S = R

true
�� S.

γA(R) and keeps all the R tuples where all attributes in A
are null; for the R tuples that are not in γA(R), γ∗

A,B(R)
nullifies all the attributes except for attributes in B. The two
operators are used to derive rewriting rules for reordering
antijoin queries.

Besides using additional compensation operators, ECA also
differs from CBA in their approach for enumerating query
plans. In CBA, the join operations in a query are conceptually
reordered via its canonical form in terms of reordering carte-
sian product operations, which is achieved by enumerating
query plans using a bottom-up approach based on the concept
of nullification sets4. However, CBA’s bottom-up enumeration
approach does not permit cost-based pruning of query plans.
In contrast, ECA enumerates query plans using a top-down,
cost-based query rewriting approach.

C. Join Reordering Properties

To help detect invalid join reorderings, [7] has characterized
valid and invalid join orderings using three properties (named
assoc, l-asscom, and r-asscom) that are derived from
the associativity and commutativity properties of join operators
and are defined as follows:

• assoc property: (e1
p12◦a e2)

p23◦b e3 = e1
p12◦a (e2

p23◦b e3)

• l-asscom property: (e1
p12◦a e2)

p13◦b e3 = (e1
p13◦b e3)

p12◦a e2

• r-asscom property: e1
p13◦a (e2

p23◦b e3) = e2
p23◦b (e1

p13◦a e3)

We denote these three join transformations by assoc(◦a, ◦b),
l-assoc (◦a, ◦b), and r-assoc(◦a, ◦b), respectively. We say that
a specific transformation is valid if the corresponding property
holds for the specified join operators; and invalid otherwise.
For example, assoc(��, ��) is valid but r-assoc(��, ��) is
invalid.

The goal of our compensation-based join reordering ap-
proach is to enable the join reordering in each invalid trans-
formation to be possible by expressing the rewriting rule in
a more general form (refer to Table I) where a join operator
could be changed and/or compensation operator(s) could be
introduced after the transformation is applied.

III. OUR APPROACH

In this section, we present the first complete solution named
CJR (for Complete Join Reordering) for the join reorderability
problem. Given a query Q that involves any combination of
join operators, CJR is able to enumerate equivalent query plans
for Q for any join ordering.
CJR is a compensation-based approach that is in the same

spirit as the state-of-the-art ECA that uses additional com-
pensation operators to reorder join operations. However, there
are two key differences between CJR and ECA. First, while
ECA introduces two new compensation operators (γ and γ∗)
in addition to the two compensation operators (i.e., λ and
β) from CBA, CJR introduces only one new compensation

4A nullification set for a relation R is the set of all join predicates (including
implied ones) that can nullify R (i.e., set all the attribute values of a tuple in
R to null).

operator τ (Section III-A) in addition to also using λ and β.
Thus, CJR is a more general solution than ECA and yet uses
fewer compensation operators. Second, due to their different
sets of compensation operators, CJR requires new rewriting
rules (Sections III-A to III-D).

Similar to both CBA and ECA, our approach also requires
that all join predicates are null-intolerant to have complete
reorderability. If some join predicates are null-tolerant, our
approach still strictly supersedes all existing approaches in
terms of reorderability.

A. Compensation Operators

CJR uses three compensation operators, β, λ and τ . The
first two operators (β and λ) are from CBA which have been
introduced in Section II-B.

The third operator, τ , is a new unary operator that is a
generalization of λ with two sets of nullification attributes (A
and B):

τp,A,B(R) = λp,A(R) ∪ λp,B(R).

Semantically, for each tuple t ∈ R, if the nullification
predicate p evaluates to true on t, t will remain unchanged
in the output of τp,A,B(R); otherwise, two tuples, tA and
tB , will be added to the output of τp,A,B where each tS ,
S ∈ {A,B}, is derived from t by nullifying S. Note that
R1

p12

�� R2 = β(τp12,R1,R2(R1

◦× R2)). We will illustrate in
Section III-C how τ is used for reordering joins for full
outerjoin queries in Example 4.

Although CJR uses the same λ operator as both CBA and
ECA, a subtle difference is that CBA’s and ECA’s usage of λ
is limited to the nullification predicates being null-intolerant,
whereas CJR also uses λ with null-tolerant nullification pred-
icates. Consequently, our approach can define the two new
compensation operators in ECA more succinctly as γA(R) =
β(λA is null,R(R)) and γ∗

A,B(R) = β(λA is null,R\B(R));
thus, CJR can support all the rewriting rules in ECA (and
hence also CBA).

B. Join Reordering Rules

In this section, we will look at the rewriting rules enabled
by CJR for join reordering.

Example 1. Consider the query Q = R1

p12

�� (R2
p23
�� R3)

where we want to reorder the join operations to first join R1

and R2. Since �� and �� are not associative, Q �= Q1, where
Q1 = (R1

p12

�� R2)
p23
�� R3. Their non-equivalence is clear as

Q preserves all the R1 tuples, while in Q1, some R1 tuple
could be eliminated after

p23
�� .

To preserve all the R1 tuples, we could replace
p23
�� in Q1

with
p23

�� to obtain Q2 = (R1

p12

�� R2)
p23

�� R3. However, Q2 is
still not equivalent to Q, because in Q, some R2 tuple could
be eliminated by

p23
�� , whereas Q2 preserves all the R2 tuples.

By using λ and β to compensate Q2, it can be shown that
Q = β(λR3 not null,R2 (Q2)). For each tuple t in the output
of Q2, the operator λR3 not null,R2 nullifies t.R2 if “t.R3 not

Rule 1 assoc(�� , ��) (R1
p12
�� R2)

p23
�� R3 = (R2

p23
�� R3)

p12
�� R1

Rule 2 assoc(�� , ��) R1
p12
�� (R2

p23
�� R3) = β(λR3 not null,R2

((R1
p12
�� R2)

p23
�� R3))

Rule 3 assoc(�� , �) (R1
p12
�� R2)

p23
� R3 = β(πR1∪R2

(λR2 is null ∨ R3 is null,R1∪R2∪R3
(R1

p12
�� (R2

p23
�� R3))))

Rule 4 assoc(�� , �) R1
p12
�� (R2

p23
� R3) = β(πR1∪R2

(λR2 is null ∨ R3 is null,R2∪R3
((R1

p12
�� R2)

p23
�� R3)))

Rule 5 assoc(�, ��) R1
p12
� (R2

p23
�� R3) = R1

p12
� R2

Rule 6 assoc(��, ��) (R1
p12
�� R2)

p23
�� R3 = β(λR1 not null,R2

(R1
p12
�� (R2

p23
�� R3)))

Rule 7 assoc(��, ��) R1
p12
�� (R2

p23
�� R3) = (R1

p12
�� R2)

p23
�� R3

Rule 8 assoc(�, ��) R1
p12
� (R2

p23
�� R3) = β(πR1

(λR2 is null,R1∪R2∪R3
(β(λp23 ,R2

((R1
p12
�� R2)

p23
�� R3)))))

Rule 9 assoc(�, �) R1
p12
� (R2

p23
� R3) = β(πR1

(λR2 is null,R1∪R2∪R3
(β(λR3 is null,R2∪R3

((R1
p12
�� R2)

p23
�� R3)))))

Rule 10 assoc(�, ��) R1
p12
� (R2

p23
�� R3) = β(πR1

(λR2 is null,R1∪R2∪R3
((R1

p12
�� R2)

p23
�� R3)))

Rule 11 assoc(��, �) (R1
p12
�� R2)

p23
� R3 = β(πR1∪R2

(λR3 is null,R1∪R2∪R3
(R1

p12
�� (R2

p23
�� R3))))

Rule 12 assoc(��, �) R1
p12
�� (R2

p23
� R3) = β(πR1∪R2

(λR3 is null,R2∪R3
((R1

p12
�� R2)

p23
�� R3)))

Rule 13 r-asscom(�, ��) R2
p23
� (R1

p13
�� R3) = β(πR2

(λR3 is null,R1∪R2∪R3
(β(λp13 ,R3

((R2
p23
�� R3)

p13
�� R1)))))

Rule 14 r-asscom(�, ��) R1
p13
� (R2

p23
�� R3) = β(πR1

(λR3 is null,R1∪R2∪R3
(β(λp23,R3

((R1
p13
�� R3)

p23
�� R2)))))

Rule 15 assoc(��, ��) (R1
p12
�� R2)

p23
�� R3 = R1

p12
�� (R2

p23
�� R3)

Rule 16 assoc(��, ��) R1
p12
�� (R2

p23
�� R3) = β(λp23,R2

((R1
p12
�� R2)

p23
�� R3))

Rule 17 r-asscom(��, ��) R1
p13
�� (R2

p23
�� R3) = R2

p23
�� (R1

p13
�� R3)

Rule 18 r-asscom(��, ��) R2
p23
�� (R1

p13
�� R3) = β(λp13,R3

((R2
p23
�� R3)

p13
�� R1))

Rule 19 r-asscom(��, ��) R1
p13
�� (R2

p23
�� R3) = β(λp23,R3

((R1
p13
�� R3)

p23
�� R2))

TABLE I: Join reorderings enabled by CJR. Rules 8-14 and Rules 15-19 are translated from ECA [14] and CBA [11], respectively,
using CJR’s compensation operators. Rules 1-7 are for reordering full outerjoins. Rules 2, 3, 4 & 6 are the new rules with
compensation operators. Rules 1, 5 & 7 [3]–[5] compensate by changing the join type and do not require compensation
operators.

null” evaluates to not true (i.e., if t.R3 is null) 5. This is
because if t.R3 is null, it means that the t.R2 value cannot
join will any tuple from R3. Therefore, t.R2 should be nullified
as in Q. The β operator eliminates spurious tuples from the
nullification of Q2. �

Table I shows the rewriting rules that are enabled by CJR;
note that as semijoins are rewritten in terms of inner joins
(i.e., R1 � R2 = πR1(R1 �� R2)), Table I does not have
explicit rewriting rules for semijoins. Each of the rewriting
rules enables a join reordering that is considered to be an
invalid transformation (as defined in Section II-C without
using any compensation operator and without any join operator
transformation). Rules 1-7 are the rules for reordering full
outerjoin queries, rules 8-14 are translated from [14], and
rules 15-19 are from [11]. Thus, CJR is able to support the
reordering of any pair of join operators, which is strictly
more expressive than the join orderings supported by ECA.
We include the proofs for some of the rules in our technical
report [15].

C. Pulling up Compensation Operators

To achieve complete join reorderability, besides the join
reordering rules in Section III-B, we also need additional
rewriting rules for pulling compensation operators above join

5Note that “A is null” evaluates to true if all attributes in A have null
values, and “A not null” evaluates to true if some attribute in A has a non-
null value.

p14
�

p12

��

R1
p23
��

R2 R3

R4

p14
�

β

λR3 not null,R2

p23

��
p12

��

R1 R2

R3

R4

β

λR3 not null,R2

p14
�

p23

��
p12

��

R1 R2

R3

R4

β

λR3 not null,R2

p23

��
p14

�
p12

��

R1 R2

R4

R3

(a) Qa (b) Qb (c) Qc (d) Qd

Fig. 2: Query plans for Examples 2

operators. The following example illustrates the need for these
additional rewriting rules.

Example 2. Consider the query Qa in Figure 2(a). By
applying Rule 2 in Table I, we obtain Qb in Figure 2(b). Now
suppose that we want to reorder

p14
� and

p23

��. However, since the
compensation operators β and λR3 not null,R2 are sandwiched
in between

p14
� and

p23

��, we could not freely reorder the joins.
Therefore, we need to first pull β and λR3 not null,R2 above
p14

� to make
p14

� and
p23

�� adjacent, before we could reorder the
two joins. In this case, the compensation operators can be
trivially pulled up using Rule 9 in Table II. After we pull up
the compensation operators, we obtain Qc, where

p14
� and

p23

��
are adjacent. As l-asscom(��,�) is a valid transformation [7],

Rule 1 β(λp,R3
(R1))

p12
�� R2 = β(λp,R3

(R1
p12
�� R2)), where p12 does not reference R3

Rule 2 β(λp,R3
(R1))

p12
�� R2 = β(λp,R1∪R2

(R1
p12
�� R2)), where p12 references R3

Rule 3 β(λp,R3
(R1))

p12
�� R2 = β(λp,R3

(R1
p12
�� R2)), where p12 does not reference R3

Rule 4 β(λp,R3
(R1))

p12
�� R2 = β(λp,R3∪R2

(R1
p12
�� R2)), where p12 references R3

Rule 5 R2
p12
�� β(λp,R3

(R1)) = β(λp,R3
(R2

p12
�� R1)), where p12 does not reference R3

Rule 6 R2
p12
�� β(λp,R3

(R1)) = β(λp,R1
(R2

p12
�� R1)), where p12 references R3

Rule 7 β(λp,R3
(R1))

p12
�� R2 = β(λp,R3

(R1
p12
�� R2)), where p12 does not reference R3

Rule 8 β(λp,R3
(R1))

p12
�� R2 = β(τp,R1,R3∪R2

(R1
p12
�� R2)), where p12 references R3

Rule 9 β(λp,R3
(R1))

p12
� R2 = β(λp,R3

(R1
p12
� R2)), where p12 does not reference R3

Rule 10 β(λp,R3
(R1))

p12
� R2 = β(πR1

(λR2 is null,R1∪R2
(β(λp,R3∪R2

(R1
p12
�� R2))))), where p12 references R3

Rule 11 R2
p12
� β(λp,R3

(R1)) = R2
p12
� R1, where p12 does not reference R3

Rule 12 R2
p12
� β(λp,R3

(R1)) = β(πR2
(λR1 is null,R2∪R1

(β(λp,R1
(R2

p12
�� R1))))), where p12 references R3

Rule 13 β(τp,R3,R4
(R1))

p12
�� R2 = β(τp,R3,R4

(R1
p12
�� R2)), where p12 does not reference R3 ∪ R4

Rule 14 β(τp,R3,R4
(R1))

p12
�� R2 = β(λp12,R1∪R2

(τp,R3,R4
(R1

p12
�� R2))), where p12 references R3 ∪ R4

Rule 15 β(τp,R3,R4
(R1))

p12
�� R2 = β(τp,R3,R4

(R1
p12
�� R2)), where p12 does not reference R3 ∪R4

Rule 16 β(τp,R3,R4
(R1))

p12
�� R2 = β(λp12,R2

(τp,R3,R4
(R1

p12
�� R2))), where p12 references R3 ∪ R4

Rule 17 R2
p12
�� β(τp,R3,R4

(R1)) = β(τp,R3,R4
(R2

p12
�� R1)), where p12 does not reference R3 ∪R4

Rule 18 R2
p12
�� β(τp,R3,R4

(R1)) = β(λp12,R1
(τp,R3,R4

(R2
p12
�� R1))), where p12 references R3 ∪ R4

Rule 19 β(τp,R3,R4
(R1))

p12
�� R2 = β(τp,R3,R4

(R1
p12
�� R2)), where p12 does not reference R3 ∪R4

Rule 20 β(τp,R3,R4
(R1))

p12
�� R2 = β(τp12,R1,R2

(β(τp,R3 ,R4
(R1

p12
�� R2)))), where p12 references R3 ∪R4

Rule 21 β(τp,R3,R4
(R1))

p12
� R2 = β(τp,R3,R4

(R1
p12
� R2)), where p12 does not reference R3 ∪R4

Rule 22 β(τp,R3,R4
(R1))

p12
� R2 = β(πR1

(λR2 is null,R1∪R2
(β(λp12,R2

(τp,R3,R4
(R1

p12
�� R2)))))), where p12 references R3 ∪R4

Rule 23 R2
p12
� β(τp,R3,R4

(R1)) = R2
p12
� R1, where p12 does not reference R3 ∪R4

Rule 24 R2
p12
� β(τp,R3,R4

(R1)) = β(πR2
(λR1 is null,R2∪R1

(β(λp12,R1
(τp,R3,R4

(R2
p12
�� R1)))))), where p12 references R3 ∪R4

TABLE II: Pulling-up rules for λ and τ . Note that R3, R4 ⊆ R1. The join predicates are null-intolerant, and p can be null-
tolerant or null-intolerant. Rules 1-12 are for pulling up λ, and Rules 13-24 are for pulling up τ . Rules 7-8 & 13-24 are new
rules. Rules 1-6 & 9-12 are from ECA [14]; these rules still hold when p is null-tolerant.

p23

�� and
p14
� can be reordered to obtain Qd. �

In Example 2, the compensation operators can be simply
pulled up without changing their forms. However, in Examples
3 and 4, we will look at two other cases where the compen-
sation operator needs to be changed after being pulled up.
Specifically, Example 3 changes the compensation operator
due to an effect known as the rippling effect, and Example 4
illustrates the need for our new compensation operator τ .

Example 3. Consider the query Q = β(λp,R3 (R1))
p12
�� R2,

where R3 ⊆ R1. Suppose that we want to pull β and
λp,R3(R1) above

p12
�� . If p12 does not reference any attribute

in R3, then we can simply pull up β and λp,R3(R1) to obtain
Q = β(λp,R3 (R1

p12
�� R2)). This is because whether a tuple is

nullified by λp,R3(R1) or not, it will not affect the tuple’s
joinability with R2. Therefore, performing the nullification
before or after the join does not make any difference.

However, if p12 references some attribute in R3, then the
nullified tuples in R1 will not join with any tuple in R2 since
join predicates are assumed to be null-intolerant. Let t ∈ R1

be a tuple that is nullified in λp,R3(R1). If we pull λp,R3 above
p12
�� to obtain Q′ = β(λp,R3 (R1

p12
�� R2)), the problem is that

p12 will not see the new null value in t introduced by λp,R3

since λp,R3 is now performed after the join. As a result, t may
appear in the inner join result of Q′ while it is not in the join
result of Q.

To fix this, we replace the nullification attribute R3 in Q′

with R1 ∪R2 to obtain Q′′ = β(λp,R1∪R2(R1
p12
�� R2)). Now

we have Q′′ = Q. The difference between Q′′ and Q′ is that
if p evaluates to not true for t ∈ R1, instead of nullifying only
R3, Q′′ would nullify all the attributes in R1 and R2. This
is because if R3 is nullified in t, then t will not appear in
the join result of Q; if it appears in the join result of Q′′, we
should remove the result tuple by nullifying all the attributes.
This is referred to as the rippling effect in [11].

�

The next example shows a case where a λ operator needs
to be changed to τ when being pulled up.

Example 4. Consider Q = β(λp,R3 (R1))
p12

�� R2, where R3 ⊆
R1 and p12 references R3. Suppose that we want to pull β

and λp,R3 above
p12

�� . If we simply pull up both operators, we
would obtain Q′ = β(λp,R3(R1

p12

�� R2)), To see that Q �= Q′,
consider t1 ∈ R1 to be a tuple that is nullified by λp,R3 .
In Q, t1 will not be able to join with any tuple in R2 after
the nullification, but in Q′, t1 may join with some tuple t2 ∈

R2 and produce a tuple (t1, t2) in the output of Q′ with R3

nullified in t1.
To fix this, we replace λp,R3 in Q′ with τp,R1,R3∪R2 to

obtain Q′′ = β(τp,R1,R3∪R2(R1

p12

�� R2)). Now Q = Q′′.
Recall that the problem with Q′ is that, if p evaluates to not
true on a tuple t1 ∈ R1, we should not let t1 to join with
any tuple in R2; but if we compute R1

p12

�� R2 before λp,R3 ,
t1 may join with some t2 ∈ R2 and produce (t1, t2) in the
full outerjoin result. Now in Q′′, τp,R1,R3∪R2 will duplicate
(t1, t2) in the full outerjoin result, and nullify R1 for one
copy to get (null, t2), and nullify R3 ∪R2 for the other copy
to get (t1, null), with R3 nullified in t1. This produces the
same result as if t1 does not join t2, like in Q. Thus, we have
Q = Q′′. �

To achieve complete join reorderability, we need rules to
pull up λ and τ above all types of join operators. The complete
set of such rewriting rules are given in Table II.

D. Rules for Reordering Compensation and Unary Operators

Table III shows the rewriting rules for reordering
the compensation operators and unary relational operators
(selection/projection/top-k).

In Rule 7, tk,L(R) denotes the top-k operator correspond-
ing to the SQL query select * from R order by L
limit k, where k is an integer and L is the order-by list.
Reordering rules between other unary operators (e.g., group
by with aggregation) and compensation operators is non-trivial
and requires further research.

Rule 1 σp(β(R1)) = β(σp(R1)), where p is null-intolerant
Rule 2 σp1 (λp2,R2

(R1)) = λp2,R2
(σp1 (R1)),

where p1 does not reference R2

Rule 3 σp1 (τp2,R2,R3
(R1)) = τp2,R2,R3

(σp1 (R1)),
where p1 does not reference R2 ∪ R3

Rule 4 β(πR2
(β(R1))) = β(πR2

(R1))

Rule 5 β(λp,R2
(πR3

(R1))) = β(πR3
(λp,R2

(R1)))

Rule 6 β(τp,R2,R3
(πR4

(R1))) = β(πR4
(τp,R2,R3

(R1)))

Rule 7 tk,L(λp,R2
(R1)) = λp,R2

(tk,L(R1)),
where L does not involve attributes in R2

TABLE III: Rules for reordering compensation and unary
relational operators

E. Query Plan Enumeration

As observed by ECA [14], the query plan enumeration
problem becomes more intricate in the presence of compen-
sation operators due to two complexities: keeping tracking
of compensation operators generated and reasoning about the
equivalence of query subplans with compensation operators.
Since ECA is driven by query rewriting rules, ECA adopted a
cost-based, top-down enumeration approach. This top-down
approach can be adapted for CJR as well by using our
compensation operators and rewriting rules.

F. Handling Duplicates and All-null Tuples

Same as CBA [11], we assume that each base table has
a key column, and the key IDs will be carried along to the
root of the join tree, so there will be no duplicates in the
base tables since tuples have unique key IDs. In practice,
if the base table does not have a key column, we can add
a virtual key column to the table during query optimization
(i.e., to use the tuple ID as key ID as noted by CBA). Then
duplicate tuples in the base tables will not be eliminated by
the compensation operators because they have unique virtual
keys during optimization. Furthermore, if a base table has
tuples whose attribute values are all nulls, such tuples can be
prevented from being eliminated by marking the null values in
these tuples as special null values which are treated as non-null
values by the the compensation operators.

IV. IMPLEMENTATION OF COMPENSATIONS

This section discusses the implementation of the compen-
sation operators (i.e., β, λ, and τ). Similar to CBA and ECA,
we shall focus on a SQL-level implementation, where the
query plan (with compensation operators) chosen by the query
optimizer is translated back into an SQL query that implements
that plan. This approach is easier to implement and is less
intrusive than a native approach to implement the operators.

A. Implementation of λ and τ

The λ operator is implemented following CBA’s approach,
which uses SQL’s case expression to nullify the nullification
attributes. Specifically, for each Ai ∈ A, we use a case
expression “CASE WHEN p THEN Ai END AS Bi”, where
Bi will be Ai if p evaluates to true; and null, otherwise.

For the new compensation operator, τp,A,B(R), its imple-
mentation is straightforward using SQL’s WITH construct to
first define a temporary table for the tuples in R that do not
evaluate to true for p, and the main query unions the results
of the temporary table with two other subqueries that each
nullifies either attributes A or B (via a case expression) for
the tuples in R that evaluates to true for p.

For cost modeling, the cost of both λ and τ is the cost for
doing one sequential scan of the input operand to evaluate the
predicate p.

B. Implementation of β

In this section, we discuss the implementation of the most
complex operator β which is used to eliminate the spurious
tuples from its relation operand R.

Recall that β(R) is used to remove the duplicated or domi-
nated tuples in R. The existing implementation approach for β
is based on sorting [11], where the idea is to find a favourable
ordering such that when R is sorted using this ordering, each
spurious tuple in the sorted R will be immediately preceded
by a tuple that duplicates or dominates it. With this property,
the spurious tuples in R can be eliminated by using a window
function in a SQL query. In general, it may not be always
possible to eliminate all spurious tuples in R using a single
favourable ordering.

However, the algorithm for computing the favourable or-
dering in [11] is only applicable for queries without any
full outerjoin. This is because the approach is based on a
concept called nullification sets, which are defined for queries
involving only inner joins and left outerjoins. Using a similar
sorting-based approach for full outerjoin queries requires a
redefinition of nullification sets and the design of a sound
algorithm for computing the favourable ordering based on this
new definition.

We first give an overview of the algorithm in [11] to
compute the favourable ordering. Let NS(Q) denote the
nullification sets computed for a query Q, and Ri denote some
base relation.

In the left outerjoin result of Q1 = R1

p12

�� R2, we have
NS(Q1) = {R1 : ∅, R2 : {p12}}, which means that the
predicate p12 nullifies R2 and R1 is not nullified by p12.
Similarly, in the inner join result of Q2 = R1

p12

�� R2, we have
NS(Q1) = {R1 : {p12}, R2 : {p12}}. Essentially, NS(Q)
gives a mapping between the base relations and their respective
nullifying predicates in the query Q. For Q3 = β(λp,R1 (R)),
we have NS(Q3) = {R1 : {p}}. We use NSRi(Q) to denote
the set of nullifying predicates for Ri in Q.

One important property of nullification sets is that if
NSRi(Q) ⊆ NSRj (Q), then for any tuple t in the query
result of Q, t.Ri is null implies that t.Rj must also be null,
where t.R denotes the value of R in t. It can be shown that
if the relations that are nullified by compensation operators
in Q are linearly ordered based on the inclusion property of
their nullification sets, then sorting the result of Q by this
ordering can guarantee that a dominated tuple will always
be preceded by its dominating tuple [11]. Another important
observation is that, given β(λ(J)) where J is a join result,
if a tuple t ∈ J is not nullified by λ, then t will not be
dominated by any tuple in λ(J) [11]. With these properties
and observations, [11] proposes an algorithm to construct a
directed acyclic graph (DAG) based on the inclusion property
of the nullification sets in NS(Q), which is used to derive a
favourable ordering for Q. The algorithm for constructing the
DAG and computing the favourable ordering is given in [11].

Next, we explain that to adapt this algorithm for full
outerjoin queries, it is necessary to define nullification sets
on a tuple basis instead of on a query basis. Given a query
Q, the computation of nullification sets in [11] assumes that
the nullification sets are the same for each result tuple t ∈ Q.
However, this is no longer true if Q involves full outerjoins.
For Q3 = R1

p12

�� R2, for some result tuple t ∈ Q3, p12 nullifies
R1, but for some other result tuple t′ ∈ Q3, p12 nullifies R2,
based on the definition of full outerjoin. Thus, we need to find
a favourable ordering that is sound for both types of tuples.

To achieve this, we extend the definition of nullification
sets on queries to tuples. More formally, given a query Q
which may involve full outerjoins, let NS(t) represent the
nullification sets for a result tuple t ∈ Q, which is defined as
the mapping between the base relations and their nullifying
predicates for the tuple t. Then we use NS(Q) to denote the

Algorithm 1: Algorithm for computing NS(Q)

Input: A query Q
Output: The nullification sets NS(Q) for Q

1 Let T be the query tree for Q
2 return ComputeNS(T)
3 Function ComputeNS(T):
4 Let n be the root node of T
5 if n is a base relation R then
6 Initialize a new NS1 = {R : ∅}
7 Initialize the list list NS = [NS1]
8 return list NS
9 else if n is a join node then

10 left list NS = ComputeNS(n.left)
11 right list NS = ComputeNS(n.right)
12 Let pred be the join predicate of n
13 if n is a full outerjoin node then
14 Let rels ref be the set of relations referenced

by pred
15 Initialize an empty list list NS
16 foreach NSl in left list NS, NSr in

right list NS do
17 Create a copy NS′

l of NSl, and a copy
NS′

r of NSr

18 foreach relation r in n.left do
19 NS′

l [r] = NS′
l [r] ∪ {pred}

∪{p ∈ NS′
l [t]∪NS′

r[t]|t ∈ rels ref}
20 Merge NS′

l and NS′
r to get NS′

21 Create a copy NS′′
l of NSl, and a copy

NS′′
r of NSr

22 foreach relation r in n.right do
23 NS′′

r [r] = NS′′
r [r] ∪ {pred} ∪{p ∈

NS′′
l [t] ∪NS′′

r [t]|t ∈ rels ref}
24 Merge NS′′

l and NS′′
r to get NS′′

25 list NS += [NS′, NS′′]
26 return list NS
27 else if n is a inner join/left outerjoin/antijoin node

then
28 /* omitted */
29 else if n is a compensation node then
30 /* omitted */
31 End Function

set {NS(t)|t ∈ Q}. Thus, given a query Q, if Q involves
m full outerjoins, NS(Q) may contain up to 2m different
versions of nullification sets. In other words, the result tuples
of Q are conceptually partitioned into 2m partitions, and tuples
from different partitions could have different nullification sets.

The algorithm for computing NS(Q) is shown in Algorithm
1. We show only the computation for full outerjoin nodes in
an input query plan tree and omit the details for other nodes
due to space constraints. The computation for left outerjoin
nodes and inner join nodes remains the same as in [11].
The computation for antijoin nodes is trivial: since all the
relations in the right operand are removed and no null values
are introduced for the relations in the left operand, we simply
return ComputeNS(n.left) for an antijoin node n.

To explain the computation of nullification sets for a full
outerjoin node, we use the query example shown in Figure 3.
We use the compensated query Q4 as the example input to
Algorithm 1. Note that Q4 could be obtained by transforming

β

λR3 not null,R2

p23

��
p14

��
p12

��

R1 R2

R4

R3

p14
��

p12

��

R1
p23
��

R2 R3

R4

(a) Q4 (b) Q′
4

Fig. 3: An example query used in Section IV-B Implementa-
tion of β.

a conventional query Q′
4 (shown in Figure 3(b)), that is, by

applying Rule 2 in Table I to swap
p12

�� and
p12
�� , and then

applying l-asscom(��, ��) to swap
p14

�� down.
Algorithm 1 will perform a post-order traversal on the

query tree of Q4 (denoted by T) by calling the function
ComputeNS(T). The function ComputeNS(T) returns the
computed nullification sets for an input query tree T . With Q4

in Figure 3(a), the post-order traversal will first compute the
nullification sets for the subtree rooted at

p12

�� . Nullification sets
are first initialized for the base relations R1 and R2 (lines 5-8
in Algorithm 1), and on lines 9-11, we get left list NS =
[{R1 : ∅}] and right list NS = [{R2 : ∅}]. From line 13
to 26, the tuples in the full outerjoin result are conceptually
partitioned into two groups, and we compute NS′ and NS′′

respectively for the two groups. For the first group of tuples
(lines 17-20), the left operand gets nullified, so we add the
join predicate p12 into the nullification sets of each relation
in n.left (line 19), to get NS′

l = {R1 : {p12}}. Note that
line 19 (and 23) applies the rippling effect of null-intolerant
join predicates [11], which says if a null-intolerant predicate
p1 nullifies R1, and p1 references R2, then all predicates that
nullify R2 also (indirectly) nullifies R1. Then NS′

l is merged
with NS′

r = {R2 : ∅} to get NS′ = {R1 : {p12}, R2 : ∅}.
Lines 21-24 do the same for the second group of tuples where
the right operand of the full outerjoin gets nullified, and we
get NS′′ = {{R1 : ∅}, R2 : {p12}}. Both NS′ and NS′′ are
returned as nullification sets on this subtree (lines 25-26).

Next, when the algorithm traverses the node
p14

�� in Q4, we
have left list NS = [{R1 : {p12}, R2 : ∅}, {R1 : ∅, R2 :
{p12}}] and right list NS = [{R4 : ∅}] (similar to lines
10-11 for full outerjoins). Then for each pair (NSl, NSr)
where NSl ∈ left list NS and NSr ∈ right list NS, the
join predicate p14 is added to nullification sets of relations in
both operands of the inner join, and no conceptual partitioning
of result tuples is needed for an inner join. Note that here
since p14 references R1, predicates that nullify R1 should
also be added to the nullification sets of all the relations
due to the ripping effect. The returned nullification sets will
be [{R1 : {p12, p14}, R2 : {p12, p14}, R4 : {p12, p14}},
{R1 : {p14}, R2 : {p12, p14}, R4 : {p14}}]. We continue to run
Algorithm 1 to traverse every node in Q4 to get the eventual
NS(Q4).

In the following, we describe how to compute a favourable
ordering for a query Q that is compatible to all versions of
nullification sets in NS(Q), and thus is guaranteed to be a
favourable ordering for all the result tuples of Q.

After we obtain NS(Q) from Algorithm 1, for each NSi ∈
NS(Q), we construct a DAG named Di as described in [11].
A node in Di represents a set of base relations. Essentially,
each Di constitutes a partial order among the base relations.
Note that in one Di, for relations represented by the same
node, the ordering between them does not matter. Our goal is
to find a total order that is compatible to all the partial orders
in all Di.

To find the total order, we first convert each Di to a set
of directed edges among base relations , denoted as Gi. For
example, if there is an edge from {R1} to {R2, R3} in Di,
we will have two directed edges R1 → R2 and R1 → R3

in Gi. After the conversion, we union all the edges in all Gi

to obtain a new graph G, in which each node corresponds to
exactly one base relation. Finally, we run topological sort on
G to find the favourable ordering.

Note that it is in general possible for G to be cyclic, which
implies that there are conflicts among different Gi. In this
case, a favourable ordering does not exist. [11] noted that
a favourable ordering may not always exist even for queries
without full outerjoins. For such queries, we use a more direct
approach to implement β as described below.

When a favourable ordering does not exist, the most direct
way to implement β(R) is to do a self-antijoin of R to find
tuples that are not dominated or duplicated by any other tuples
in R. However, as mentioned before, an important observation
is, spurious tuples must have been further nullified by some
compensation operators. Therefore, we need not consider the
tuples that are not nullified by compensation operators. Thus,
when we evaluate λ and τ , we add a column in the result to
indicate whether the result tuple has been further nullified by
some λ or τ operators. Then when we use a self-antijoin to
compute the β result, we consider only the further nullified
tuples to be eliminated by β.

Our technical report [15] includes an example β imple-
mentation with detailed SQL queries using the sorting based
method and the self-antijoin based method.

V. EXPERIMENTS

In this section, we present experimental results to demon-
strate the benefits of the enlarged query plan search space for
full outerjoin queries that is enabled by our proposed CJR.

As there are no database benchmarks that are focused on
full outerjoin queries, we generated our test SQL queries with
full outerjoins from two well-known benchmarks: Join Order
Benchmark (Section V-A) and TPC-H (Section V-B). For
each generated test query Q, we compared the performance
of two query plans. The first query plan, referred to as a
conventional query plan, is the best query plan for Q selected
by PostgreSQL database server. The second query plan, re-
ferred to as compensated query plan, is the query plan for Q
generated using our approach as follows. The SQL query is

p45
��

p234

��
p23
��

p12

��

R1 R2

R3

R4

R5

p45
��

p234

��
p12
��

R1
p23
��

R2 R3

R4

R5

p45
��

β

λR1 not null,R2∪R3

p12

��
p234

��

R4
p23
��

R2 R3

R1

R5

β

λR1 not null,R2∪R3

p12

��
p45
��

p234

��

R4
p23
��

R2 R3

R5

R1

β

λR1 not null,R2∪R3

p12

��
p234

��
p45
��

R4 R5

p23
��

R2 R3

R1

(a) P0 (b) P1 (c) P2 (d) P3 (e) P4

Fig. 4: Query plans for 2d 19 on JOB dataset. R1 to R5 denote the tables company name, movie companies, title,
movie keyword, and keyword, respectively. P0 is the canonical plan directly translated from the SQL query. P1 is the best
conventional plan, and P4 is the best compensated plan.

first translated into a canonical logical query plan from which
all possible join reorderings for that query are enumerated by
applying our query rewriting rules (Section III). The rewritten
query plans (with at least one compensation operator) are
translated into SQL queries (Section IV) and their estimated
query plan costs are estimated by PostgreSQL database server.
From among the rewritten query plans involving compensation
operators, the one with the minimum estimated query plan
cost is the compensated query plan. The performance of both
the conventional and compensated query plans are compared
by executing their corresponding SQL queries on PostgreSQL
database server.

Our experiments were conducted on an Intel Xeon Processor
E5-2603 v2 server running Ubuntu Linux 16.04 with 32GB
main memory and two 1TB SATA disks (one for the OS and
database server installation and the other for database files
storage). The queries were run on PostgreSQL 13.2 database
server with shared buffers = 5GB and work mem = 1GB.
The experimental results on Join Order Benchmark and TPC-
H show that CJR improves query performance by up to a
factor of 12.32.

A. Experiment 1: JOB Benchmark

The Join Order Benchmark (JOB) [21] is designed for eval-
uating the performance of join order optimization. However,
JOB focuses only on inner join queries without any outerjoin
queries. We describe next our approach to generate outerjoin
test queries from JOB’s inner join queries.

Given an inner join query in JOB, we derive a mutated query
from it by randomly mutating each inner join in the query into
either left outerjoin, full outerjoin, antijoin, or inner join (each
with a probability 0.25). Mutating an inner join to inner join
means that that join operation is unchanged. Thus, the mutated
and original queries are the same except for the mutated join
operations. A mutated query is discarded if it is invalid (e.g.,
the mutated query πS.a,R.b(R

p
� S) is invalid as the projected

attribute S.a does not exist in the schema of the join result).
JOB is based on the IMDB movie dataset of size 3.7GB

and consists of 113 inner join queries derived from 33 join
graphs. We used all the 17 inner join queries from the first

5 join graphs in JOB to generate 20 mutated queries from
each inner join query as described above. After discarding the
invalid mutated queries from the 340 mutated queries, we have
a total of 158 valid test queries.

Among the 158 test queries, there are 14 queries (8.8%)
where the best query plan is a compensated query plan. The
performance improvement factors (ratio of execution time for
conventional query plan to execution time for compensated
query plan) for these 14 queries are shown in Table IV6.
The numbers reported are the average among three runs. Note
that all the test queries in Table IV contain at least one full
outerjoin. The detailed SQL of the queries can be found in our
technical report [15]. Also note that for all queries in Table IV,
the best ECA plan is the same as the best conventional plan.
This is because the rewriting rules in ECA are designed to
reorder antijoins, and only two queries, 5b 13 and 5c 8 in
Table IV, involve antijoins; however, the compensated query
plans for these two queries are estimated to be more costly than
the corresponding conventional query plans. From the results
in Table IV, we observe that for 7 of the 14 queries, the best
compensated query plan improves over the best conventional
query plan by more than 3x speedup.

Note that a compensated query plan does not always out-
perform a conventional query plan as the benefit of the former
depends on whether a reordered join operation could produce a
small intermediate join result that helps reduce the cost of the
subsequent operations in the compensated query plan. Thus the
benefit of a compensated query plan depends on the selectivity
of the join/select operations.

To further investigate the effect of a subquery selectivity on
the performance improvement, we take a closer look at Query
2d 19 in Table IV which has an improvement factor 1.52. As
we will show, the improvement factor for this query can be
increased by increasing its selectivity.

The SQL query of 2d 19 is shown in Figure 5, and Figure
4(a) shows the canonical query plan P0 directly translated from
this SQL query. The best conventional query plan P1 for this

6Each test query is labeled as m n where m denotes the query number
of the JOB query that the test query is derived from and n denotes the nth

mutated query generated from that JOB query.

Query No.
Best
conventional
plan

Best
compensated
plan

Improvement
factor

1b 3 25.41s 12.81s 1.98
1b 14 25.14s 12.76s 1.96
1d 2 24.69s 5.03s 4.90
1d 9 5.74s 1.50s 3.81
1d 19 5.57s 1.53s 3.62
2d 2 46.36s 33.63s 1.37
2d 14 44.47s 32.53s 1.36
2d 19 42.67s 28.05s 1.52
4c 14 13.31s 7.81s 1.70
5b 2 > 60.00s 4.87s > 12.32
5b 5 > 60.00s 5.21s > 11.51
5b 13 > 60.00s 5.24s > 11.45
5b 16 > 60.00s 5.10s > 11.76
5c 8 23.74s 23.68s 1.002

TABLE IV: Performance comparison for queries where the
compensated query plan is the best plan. Query plans that
executed for more than 1 minute were terminated before
completion.

query is shown in Figure 4(b), and the best compensated query
plan P4 is shown in Figure 4(e). The query plan P4 is obtained
from P0 by the following sequence of query rewritings. First,
apply Rule 15 in Table I on P0 to obtain P1, and apply
Rule 2 in Table I on P1 to obtain P2. Next, apply Rule 1
in Table II and l-asscom(��, ��) on P2 to obtain P3. Note that
l-asscom(��, ��) is a valid transformation and does not require
a compensation rule. Finally, apply Rule 1 in Table I on P3

to obtain P4. Note that without the compensation rule Rule
2 in Table I and the pulling-up rule Rule 1 in Table II, it is
not possible to derive the query plan P4 using a conventional
query optimizer.

SELECT * FROM
(((((SELECT * FROM company_name

WHERE cn_country_code =’[us]’) AS company_name
LEFT JOIN movie_companies ON cn_id=mc_company_id)

INNER JOIN title ON mc_movie_id=t_id)
FULL JOIN movie_keyword ON t_id=mk_movie_id

AND mc_movie_id=mk_movie_id)
INNER JOIN (SELECT * FROM keyword WHERE

k_keyword =’character-name-in-title’)
AS keyword

ON mk_keyword_id=k_id
) AS joined;

Fig. 5: SQL query for 2d 19

For this query, P4 has a lower cost than P1 be-
cause the keyword table (R5) has a selection predicate
k_keyword = ’character-name-in-title’, and by
joining movie_keyword (R4) and keyword (R5) early in
P4, the small intermediate result produced by this join opera-
tion helps to reduce the costs of the subsequent join operations.
However, the keyword ’character-name-in-title’
used in this query turns out to be the top-3 most fre-
quent keyword among all the 134,170 keywords in all the
movies with a resultant selectivity factor of 0.9248% on the
movie_keyword table.

Table V shows the effect of increasing the selectivity of this
query’s selection predicate by varying the keyword constant
used in the query. The results show that as a less frequent
keyword is used in the selection predicate, the reduction in the
predicate selectivity factor from 0.9248% to 0.00002% results
in the improvement factor increasing from 1.52x to 21.05x.

Top-n keyword
Selectivity factor
on movie keyword
table

Improvement
factor

3 0.9248% 1.52
13 0.2330% 2.77
23 0.1740% 2.80
33 0.1500% 2.93
100 0.0889% 3.03
300 0.0433% 4.46
1000 0.0154% 5.08
2000 0.0077% 5.70
10000 0.0012% 9.72
50000 0.00011% 18.47
134170 0.00002% 21.05

TABLE V: Effect of selectivity of Query 2d 19’s selection
predicate on performance improvement

1) Experiments with DuckDB: We have also repeated
our experiments on JOB using DuckDB7, which is an ad-
vanced, open-source high-performance analytical database sys-
tem [22]. This is to show evidence that a modern database like
DuckDB cannot produce more reorderings than PostgreSQL,
because all the popular/modern database engines are based on
traditional relational operators and are therefore limited to the
valid join reorderings in TBA [7]. Specifically, we have run
the queries shown in Table IV using DuckDB. For 9 of the 14
queries, the compensated plans are faster than the conventional
plans; the execution time and improvement factors are given
in Table VI. For the remaining 5 queries, the conventional
plans run faster than the compensated plans on DuckDB. As
our approach will choose the best conventional/compensated
query plan for a query, the performance improvement factor is
1 for these 5 queries and their results are omitted from Table
VI. For the 5 queries where the conventional plans are faster in
DuckDB, we have verified that these DuckDB’s conventional
query plans use the same join orderings as the corresponding
PostgreSQL’s conventional query plans. The reason why the
conventional plans for those 5 queries are faster on DuckDB
compared to PostgreSQL is because DuckDB has chosen more
efficient join algorithms for some of the join operations (e.g.,
hash join vs. sort-merge join), due to more accurate cost
estimation for the join algorithms.

B. Experiment 2: TPC-H Benchmark

In this experiment, we run test queries on the TPC-H
benchmark dataset with a scaling factor 1. Similar to JOB, the
TPC-H benchmark is not focused on full outerjoin queries.
Unlike JOB, the TPC-H benchmark does not have complex
multi-table join queries that are amenable to the mutation

7https://duckdb.org/

p14
�

p12

��

R1
p23
��

R2 R3

R4

β

λR3 not null,R2

p23

��
p14
�

p12

��

R1 R2

R4

R3

p15
�

p14
�

p12

��

R1
p23
��

R2 R3

R4

R5

p14
�

p15
�

p12

��

R1
p23
��

R2 R3

R5

R4

β

λR3 not null,R2

p23

��
p14
�

p15
�

p12

��

R1 R2

R5

R4

R3

p26
�

p15
�

p14
�

p12

��

R1
p23
��

R2 R3

R4

R5

R6

p26
�

p14
�

p15
�

p12

��

R1
p23
��

R2 R3

R5

R4

R6

β

λR3 not null,R2

p23

��
p26
�

p14
�

p15
�

p12

��

R1 R2

R5

R4

R6

R3

(a) P pg
1 (b) PCJR

1 (c) P direct
2 (d) P pg

2 (e) PCJR
2 (f) P direct

3 (g) P pg
3 (h) PCJR

3

Fig. 6: Query plans for Experiment 2 on TPC-H dataset

0.2 0.4 0.6 0.8 1.0
Selectivity factor of selection predicate on Lineitem

6

8

10

12

14

16

18

20

22

24

R
u
n
n
in
g
ti
m
e
(s
)

PostgreSQL Plan

Our Plan

0.2 0.4 0.6 0.8 1.0
Selectivity factor of selection predicate on Lineitem

5

10

15

20

25

30

R
u
n
n
in
g
ti
m
e
(s
)

PostgreSQL Plan

Our Plan

0.2 0.4 0.6 0.8 1.0
Selectivity factor of selection predicate on Lineitem

5

10

15

20

25

30

35

40

R
u
n
n
in
g
ti
m
e
(s
)

PostgreSQL Plan

Our Plan

(a) Q1 (b) Q2 (c) Q3

Fig. 7: Performance results for Experiment 2 with queries Q1, Q2 and Q3

Query No.
Best
conventional
plan

Best
compensated
plan

Improvement
factor

1d 2 1.12s 0.62s 1.80
1d 9 7.84s 0.52s 15.07
1d 19 2.67s 0.43s 6.20
2d 2 56.46s 8.17s 6.91
2d 19 70.94s 9.36s 7.57
5b 2 11.33s 0.38s 29.81
5b 5 0.99s 0.38s 2.60
5b 16 0.80s 0.38s 2.10
5c 8 1.08s 0.47s 2.29

TABLE VI: Performance results on DuckDB

approach that we had used to generate test queries from
the queries in JOB. Therefore, for the test queries in this
experiment, we designed the following three outerjoin queries
(with increasing complexity).

Q1: (R1

p12

�� (R2
p23
�� R3))

p14
� R4

Q2: ((R1

p12

�� (R2
p23
�� R3))

p14
� R4)

p15
� R5

Q3: (((R1

p12

�� (R2
p23
�� R3))

p14
� R4)

p15
� R5)

p26
� R6

Here, R1 = σc acctbal>c1(Customer), R2 =
σo totalprice>c2(Orders), R3 = σl quantity>v(Lineitem),
R4 = σs acctbal>c4(Supplier), R5 = σn name>c5(Nation),
R6 = σc address<c6(Customer); and p12 is
“c custkey = o custkey”, p23 is “(o orderkey =
l orderkey) ∧ (l extendedprice > c3 × o totalprice)”, p14
is “s nationkey = c nationkey”, p15 is “n nationkey =
c nationkey”, p26 is “o custkey = c custkey”. c1, c2, ..., c6

are some constant values, and v is a parameter that is used
to vary the selectivity factor of the selection predicate on
Lineitem table (i.e., the ratio of the cardinality of R3 to the
cardinality of Lineitem).

For each of these queries, we compare the performance of
its conventional query plan produced by PostgreSQL against
the best compensated query plan produced by our approach.
The running times of the queries are compared in Figure 7
as the selectivity factor of the selection predicate on Lineitem
table (i.e., R3) is varied.

For query Q1, PostgreSQL is unable to reorder the joins
as shown by its query plan P pg

1 in Figure 6(a). In contrast,
our approach CJR could reorder the joins to get the rewritten
query plan PCJR

1 shown in Figure 6(b).
From the results in Figure 7(a), we observe that the com-

pensated query plan PCJR
1 has better performance than the

conventional query plan P pg
1 , especially when R3 is large.

This is because the compensated query plan PCJR
1 postpones

joining with R3 to avoid generating a large intermediate result
table early as in P pg

1 . In contrast, as the joins are not reordered
in P pg

1 , the large intermediate result produced makes the
subsequent joins expensive. The runtime improvement factor
of the compensated query plan over the traditional query plan
for Q1 is up to 2.41.

For Q2, its canonical query plan is shown in Figure 6(c).
The conventional query plan P pg

2 generated by PostgreSQL is
shown in Figure 6(d) which is able to reorder the two antijoins
in the query. This is because l-asscom(�, �) is a valid transfor-
mation [7] and therefore does not require any compensation.
CJR’s compensated query plan PCJR

2 is shown in Figure 6(e)

which also postpones the joining of table R3. As Figure 7(b)
shows, the compensated query plan PCJR

2 outperforms the
conventional query plan P pg

2 especially when R3 is large. The
runtime improvement factor of the compensation query plan
over the traditional query plan for Q2 is up to 2.48.

For Q3, the canonical query plan, PostgreSQL’s query plan
P pg
3 , and CJR’s compensated query plan PCJR

3 are shown in
Figure 6(f)-(h). The performance comparison in Figure 7(c)
shows that the compensated query plan PCJR

3 outperforms
the conventional query plan P pg

3 . The reason is similar to
that for Q1 and Q2. The runtime improvement factor of the
compensation query plan over the traditional query plan for
Q3 is up to 4.66.

Query No.
Best
conventional
plan

Best
compensated
plan

Improvement
factor

1 10.46s 10.06s 1.03
5 13.90s 10.59s 1.31
8 6.94s 2.81s 2.46
22 12.39s 2.42s 5.12
37 11.58s 11.27s 1.02
50 12.19s 3.06s 3.98
60 13.50s 12.25s 1.10
70 12.87s 2.67s 4.81
88 7.83s 2.81s 2.78
97 12.13s 2.61s 4.64

TABLE VII: Performance results for mutated TPC-H queries

In addition to the three discussed queries, we have also
applied the mutation method described in Section V-A on
queries Q1, Q2, and Q3 to generate 100 additional outerjoin
queries for each of Q1, Q2, and Q3. Using a selectivity factor
of 0.8 for the Lineitem table, the improvement factors for
these three groups of mutated queries are up to 5.35, 5.12,
and 7.14, respectively. Due to space constraint, we discuss
only the detailed results for Q2. After discarding the invalid
queries from the 100 mutated Q2 queries, we obtain 48 valid
outerjoin queries, and run these queries on the TPC-H data.
For 10 of the 48 outerjoin queries, the best compensated plan
runs faster than the best conventional plan with a performance
improvement factor of up to 5.12. The detailed results are
shown in Table VII.

VI. RELATED WORK

We have already introduced the closely related works TBA
[7], CBA [11], and ECA [14] in Section I.

A rather different approach from these query rewriting
approaches is RO [6] which evaluates a query involving some
outerjoin by first computing a derived relation for each join
operand, and then computing the inner join of the derived
relations. Although the approach is interesting, the cost of
computing the derived relations can be as high as computing
the original outerjoin query [14].

Table VIII summarizes the join reorderability comparison
of our approach CJR against the four existing works. For
clarity, the comparison is shown in terms of two scenarios
depending on whether there exists some null-tolerant join

predicates in the queries: Table VIII(a) is for queries with
only null-intolerant join predicates, and Table VIII(b) is for
queries with some null-tolerant join predicates. For each
approach, we indicate which of the five types of join reordering
transformations are supported by that approach. For example,
Table VIII(a) shows that TBA supports only the two types of
valid transformations and none of the three types of invalid
transformations.

For queries with only null-intolerant join predicates, the
compensation-based approaches (i.e., CBA, ECA, CJR) all
supersede TBA; in particular, our approach CJR is the only
approach that supports complete join reorderability.

For queries with some null-tolerant join predicates, the
supported join reorderability becomes more limited as none
of the approaches can support complete join reorderability.
Specifically, even the compensation-based approaches can not
support these invalid join transformations, and our approach
CJR supports all the valid join transformations similar to TBA,
CBA, and ECA.

valid
transfor-
mation
not in-
volving
�

valid
transfor-
mation
involv-
ing
�

invalid
transfor-
mation
involv-
ing
��, ��

invalid
transfor-
mation
involv-
ing
�

invalid
transfor-
mation
involv-
ing
��

TBA [7] � � � � �
RO [6] � � � � �
CBA [11] � � � � �
ECA [14] � � � � �
CJR � � � � �

(a) Queries with only null-intolerant (i.e. null-rejecting) join predicates

valid
transfor-
mation
not in-
volving
�

valid
transfor-
mation
involv-
ing
�

invalid
transfor-
mation
involv-
ing
��, ��

invalid
transfor-
mation
involv-
ing
�

invalid
transfor-
mation
involv-
ing
��

TBA [7] � � � � �
RO [6] � � � � �
CBA [11] � � � � �
ECA [14] � � � � �
CJR � � � � �

(b) Queries with some null-tolerant join predicates

TABLE VIII: Comparison of join reorderability

VII. CONCLUSION

In this paper, we have presented the first complete solution
to the join reorderability problem for null-intolerant joins. Our
approach, which consists of a new compensation operator and
an enhanced set of rewriting rules, provides complete join
reorderability for queries with null-intolerant join predicates.
Our experimental results on the Join Order Benchmark and
TPC-H Benchmark have demonstrated that with the enlarged
query plan search space, query performance can be improved
by up to a factor of 12.32. As part of our future work, we plan
to work on efficient native implementation of compensation
operators.

REFERENCES

[1] G. Bhargava, P. Goel, and B. Iyer, “Hypergraph based reorderings of
outer join queries with complex predicates,” in ACM SIGMOD, 1995,
pp. 304–315.

[2] U. Dayal, “Of nests and trees: A unified approach to processing queries
that contain nested subqueries, aggregates, and quantifiers,” in VLDB,
1987, pp. 197–208.

[3] C. Galindo-Legaria and A. Rosenthal, “How to extend a conventional
optimizer to handle one- and two-sided outerjoin,” in IEEE ICDE, 1992,
pp. 402–409.

[4] ——, “Outerjoin simplification and reordering for query optimization,”
ACM TODS, vol. 22, no. 1, pp. 43–74, Mar. 1997.

[5] C. A. Galindo-Legaria, “Algebraic optimization of outerjoin queries,”
Ph.D. dissertation, Harvard University, 1992.

[6] G. Hill and A. Ross, “Reducing outer joins,” VLDB Journal, vol. 18,
no. 3, pp. 599–610, Jun. 2009.

[7] G. Moerkotte, P. Fender, and M. Eich, “On the correct and complete
enumeration of the core search space,” in ACM SIGMOD, 2013, pp.
493–504.

[8] G. Moerkotte and T. Neumann, “Dynamic programming strikes back,”
in ACM SIGMOD, 2008, pp. 539–552.

[9] J. Rao, B. G. Lindsay, G. M. Lohman, H. Pirahesh, and D. E. Simmen,
“Using EELs, a practical approach to outerjoin and antijoin reordering,”
IBM Research Division, Tech. Rep. RJ 10203, December 2000.

[10] ——, “Using EELs, a practical approach to outerjoin and antijoin
reordering,” in IEEE ICDE, 2001, pp. 585–594.

[11] J. Rao, H. Pirahesh, and C. Zuzarte, “Canonical abstraction for outerjoin
optimization,” in ACM SIGMOD, 2004, pp. 671–682.

[12] A. Rosenthal and C. Galindo-Legaria, “Query graphs, implementing
trees, and freely-reorderable outerjoins,” in ACM SIGMOD, 1990, pp.
291–299.

[13] A. Rosenthal and D. S. Reiner, “Extending the algebraic framework of
query processing to handle outerjoins,” in VLDB, 1984, pp. 334–343.

[14] T. Wang and C. Chan, “Improving join reorderability with compensation
operators,” in ACM SIGMOD, 2018, pp. 693–708.

[15] T. Wang and C.-Y. Chan, “Complete Join Reordering for Null-
Intolerant Joins,” National University of Singapore, Tech. Rep., 2022,
https://bitbucket.org/taining/foj-enum/downloads/CJR-report.pdf.

[16] A. Nica, “Incremental maintenance of materialized views with outer-
joins,” Inf. Syst., vol. 37, no. 5, pp. 430–442, 2012.

[17] R. Ikeda and J. Widom, “Outerjoins in uncertain databases,” in MUD,
ser. CTIT Workshop Proceedings Series, vol. WP09-14, 2009, pp. 33–
46.

[18] K. Papaioannou, M. Theobald, and M. H. Böhlen, “Outer and anti joins
in temporal-probabilistic databases,” in ICDE. IEEE, 2019, pp. 1742–
1745.

[19] K. Zhao and J. X. Yu, “All-in-one: Graph processing in rdbmss revis-
ited,” in ACM SIGMOD, 2017, pp. 1165–1180.

[20] ——, “Graph processing in rdbmss,” IEEE Data Eng. Bull., vol. 40,
no. 3, pp. 6–17, 2017.

[21] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and
T. Neumann, “Query optimization through the looking glass, and what
we found running the join order benchmark,” VLDB Journal, vol. 27,
no. 5, pp. 643–668, 2018.

[22] M. Raasveldt and H. Mühleisen, “Data management for data science -
towards embedded analytics,” in CIDR, 2020.

