
UNIT 13

Separate Compilation

http://www.comp.nus.edu.sg/~cs1010/

http://www.comp.nus.edu.sg/~cs1010
http://www.comp.nus.edu.sg/~cs1010/

My Ph.D Code

© SoC, NUS CS1010 Unit13 - 2

© SoC, NUS CS1010 Unit13 - 3

Unit 13: Separate Compilation
CS1010 Unit13 - 4 © SoC, NUS

Objective:
 Learn how to use separate compilation for

program development

Unit 13: Separate Compilation
CS1010 Unit13 - 5 © SoC, NUS

1. Introduction
2. Separate Compilation
3. Notes

1. Introduction (1/4)
CS1010 Unit13 - 6 © SoC, NUS

 So far we have compiled our programs directly
from the source into an executable:

 For the development of large programs with

teams of programmers the following is practised
 “Break” the program into multiple modules (files)
 Compile the modules separately into object files (in

C)
 Link all object files into an executable file

produces
Executable code

a.out
Compiler

e.g.: gcc welcome.c

1. Introduction (2/4)
CS1010 Unit13 - 7 © SoC, NUS

 Header Files and Separate Compilation
 Problem is broken into sub-problems and each sub-

problem is tackled separately – divide-and-conquer
 Such a process is called modularization
 The modules are possibly implemented by different

programmers, hence the need for well-defined interfaces
 The function prototype constitutes the interface (header

file). The function body (implementation) is hidden –
abstraction

 Good documentation (example: comment to describe
what the method does) aids in understanding

1. Introduction (3/4)
CS1010 Unit13 - 8 © SoC, NUS

 Example of
documentation
 The function header

is given
 A description of what

the function does is
given

 How the function is
implemented is not
shown

double pow(double x, double y);
// Returns the result of raising
// x to the power of y.

1. Introduction (4/4)
CS1010 Unit13 - 9 © SoC, NUS

 Reason for Modular Programming
 Divide problems into manageable parts
 Reduce compilation time
 Unchanges modules do not eed to be re-compiled

 Facilitate debugging
 The modules can be debugged separately
 Small test programs can be written to test the functions in a module

 Build libraries of useful functions
 Faster development
 Do not need to know how some functionality is implemented, e.g.,

image processing routines
 Example: OpenCV – a computer vision library.

2. Separate Compilation (1/2)
CS1010 Unit13 - 10 © SoC, NUS

 From http://encyclopedia2.thefreedictionary.com/
 Separate Compilation:

 A feature of most modern programming languages that allows
each program module to be compiled on its own to produce an
object file which the linker can later combine with other object
files and libraries to produce the final executable file.

 Advantages
 Separate compilation avoids processing all the source code

every time the program is built, thus saving development time.
The object files are designed to require minimal processing at
link time. The can also be collected together into libraries and
distributed commercially without giving away source code
(through they can be disassembled).

 Examples of output of separate compilation:
 C object files (.o files) and Java .class files.

http://encyclopedia2.thefreedictionary.com/

2. Separate Compilation (2/2)
CS1010 Unit13 - 11 © SoC, NUS

 In most cases, a module contains functions that are
related, e.g., math functions.

 A module consists of
 A header file (e.g. f1.h) which contains:
 Constant definitions, e.g.:
 #define MAX 100

 Function prototypes, e.g.:
 double mean(double, double);

 A source file (e.g. f1.c) which contains:
 The functions that implement the function prototypes in the header

file (e.g., the code for the function mean(…)).
 Other functions, variables, and constants that are only used within

the module (i.e., they are module-local).

f1.h

f1.c

2.1 Separate Compilation: Case 1
CS1010 Unit13 - 12 © SoC, NUS

f1.h

f2.h

f3.h
gcc

f1.c

f2.c

f3.c

main.c

a.out

Source
files

.c & .h

Library file(s)

Compilation
and Linking

Executable
file

math.h

libm.a

Case 1:
All the source files are compiled and linked in one step.

-lm

2.1 Case 1 Demo
CS1010 Unit13 - 13 © SoC, NUS

 Let’s re-visit the Freezer version 2 program in Unit 4
Exercise 6. We will create a module that contains a
function to calculate the freezer temperature:
 Module header file:

 Module source file:

#include <math.h>

// Compute new temperature in freezer
float calc_temperature(float hr) {
 return ((4.0 * pow(hr, 10.0))/(pow(hr, 9.0) + 2.0)) - 20.0;
}

Unit13_FreezerTemp.c

// Compute new temperature in freezer
float calc_temperature(float);

Unit13_FreezerTemp.h

2.1 Case 1 Demo: Main Module
CS1010 Unit13 - 14 © SoC, NUS

#include <stdio.h>
#include "Unit13_FreezerTemp.h"

int main(void) {
 int hours, minutes;
 float hours_float; // Convert hours and minutes into hours_float
 float temperature; // Temperature in freezer

 // Get the hours and minutes
 printf("Enter hours and minutes since power failure: ");
 scanf("%d %d", &hours, &minutes);

 // Convert hours and minutes into hours_float
 hours_float = hours + minutes/60.0;

 // Compute new temperature in freezer
 temperature = calc_temperature(hours_float);

 // Print new temperature
 printf("Temperature in freezer = %.2f\n", temperature);

 return 0;
}

Unit13_FreezerMain.c

Now we can write a
program which uses
the new external function

Include the header file (Note "..." instead of
<…>).
Header file should be in the same directory
as this program.

2.1 Case 1 Demo: Compile and Link
CS1010 Unit13 - 15 © SoC, NUS

 How do we run Unit13_FreezerMain.c, since it doesn’t
contain the function definition of calc_temperature()?

 Need to compile and link the programs

$ gcc Unit13_FreezerMain.c Unit13_FreezerTemp.c -lm

 Here, the compiler creates temporary object files (which
are immediately removed after linking) and directly
creates a.out

 Hence, you don’t get the chance to see the object files
(files with extension .o)

 (Note: The option –Wall is omitted above due to space constraint.
Please add the option yourself.)

2.2 Separate Compilation: Case 2
CS1010 Unit13 - 16 © SoC, NUS

f1.h

f2.h

f3.h

gcc -c f1.c

f2.c

f3.c

gcc -c

gcc -c

f1.o

f2.o

f3.o

main.c gcc -c main.o

gcc a.out

Source
files

.c & .h
Compilation Object

files Library file(s)

Linking Executable
file

math.h

Libm.a

Case 2:
Source files are compiled separately and then linked.

The compiler creates separate
object files (files with extension .o)

-lm

2.2 Case 2 Demo: Compile and Link
CS1010 Unit13 - 17 © SoC, NUS

 For our Freezer program:

 Here, we first create the Unit13_FreezerMain.o and
Unit13_FreezerTemp.o object files, using the –c option in
gcc.

 Then, we link both object files into the a.out executable
 (Note: The option –Wall is omitted above due to space constraint.

Please add the option yourself.)

$ gcc –c Unit13_FreezerMain.c
$ gcc –c Unit13_FreezerTemp.c
$ gcc Unit13_FreezerMain.o Unit13_FreezerTemp.o -lm

© SoC, NUS CS1010 Unit13 - 18

2.2 Case 2 Demo: Compile and Link
CS1010 Unit13 - 19 © SoC, NUS

 For our Freezer program:

 Let’s say if you only modified Unit13_FreezerTemp.c but
NOT Unit13_FreezerMain.c, you can skip the first
compilation

 Speed of a lot if you have tons of files

$ gcc –c Unit13_FreezerMain.c
$ gcc –c Unit13_FreezerTemp.c
$ gcc Unit13_FreezerMain.o Unit13_FreezerTemp.o -lm

$ gcc –c Unit13_FreezerMain.c
$ gcc –c Unit13_FreezerTemp.c
$ gcc Unit13_FreezerMain.o Unit13_FreezerTemp.o -lm

3. Notes (1/2)
CS1010 Unit13 - 20 © SoC, NUS

 Difference between
 #include < … > and #include " … "
 Use " … " to include your own header files and < … > to include

system header files. The compiler uses different directory paths
to find < … > files.

 Inclusion of header files
 Include *.h files only in *.c files, otherwise duplicate inclusions

may happen and later may create problems:
 Example: Unit13_FreezerTemp.h includes <math.h>

 Unit13_FreezerMain.c includes <math.h> and
 “Unit13_FreezerTemp.h”
Therefore, Unit13_FreezerMain.c includes <math.h> twice.

3. Notes (2/2)
CS1010 Unit13 - 21 © SoC, NUS

 ‘Undefined symbol’ error
 ld: fatal: Symbol referencing errors.
 The linker was not able to find a certain function, etc., and could

not create a complete executable file.
 Note: A library can have missing functions  it is not a complete

executable.
 Usually this means you forgot to link with a certain library or

object file. This also happens if you mistyped a function name.

Summary
CS1010 Unit13 - 22 © SoC, NUS

 In this unit, you have learned about
 How to split a program into separate modules, each

module containing some functions
 How to separately compile these modules
 How to link the object files of the modules to obtain

the single executable file

End of File

CS1010 Unit13 - 23 © SoC, NUS

	http://www.comp.nus.edu.sg/~cs1010/
	My Ph.D Code
	Slide Number 3
	Unit 13: Separate Compilation
	Unit 13: Separate Compilation
	1. Introduction (1/4)
	1. Introduction (2/4)
	1. Introduction (3/4)
	1. Introduction (4/4)
	2. Separate Compilation (1/2)
	2. Separate Compilation (2/2)
	2.1 Separate Compilation: Case 1
	2.1 Case 1 Demo
	2.1 Case 1 Demo: Main Module
	2.1 Case 1 Demo: Compile and Link
	2.2 Separate Compilation: Case 2
	2.2 Case 2 Demo: Compile and Link
	Slide Number 18
	2.2 Case 2 Demo: Compile and Link
	3. Notes (1/2)
	3. Notes (2/2)
	Summary
	End of File

