
Unit 20

Searching and Sorting

http://www.comp.nus.edu.sg/~cs1010/

http://www.comp.nus.edu.sg/~cs1010
http://www.comp.nus.edu.sg/~cs1010/

Unit 20: Searching and Sorting
Searching and Sorting Unit20 - 2 NUS

Objectives:
 Understand the basic searching algorithms and

sorting algorithms
 Introduce the concept of complexity analysis

(informally)
 Implement the searching and sorting algorithms

using arrays

Reference:
 Chapter 7 Array Pointers
 Section 7.6 Searching and Sorting an Array

Unit 20: Searching and Sorting (1/2)
Searching and Sorting Unit20 - 3 NUS

1. Overall Introduction
2. Introduction to Searching
3. Linear Search

 Demo #1
 Performance

4. Binary Search

Unit 20: Searching and Sorting (2/2)
Searching and Sorting Unit20 - 4 NUS

5. Introduction to Sorting
6. Selection Sort

 Demo #2
 Performance

7. Bubble Sort
 Demo #3
 Performance

8. More Sorting Algorithms
9. Animated Sorting Algorithms

1. Overall Introduction
Searching and Sorting Unit20 - 5 NUS

 You have accumulated quite a bit of basic programming
experience by now.

1. Overall Introduction
Searching and Sorting Unit20 - 6 NUS

 You have accumulated quite a bit of basic programming
experience by now.

 Today, we will study some simple yet useful classical
algorithms which find their place in many CS applications
 Searching for some data amid very large collection of data
 Sorting very large collection of data according to some order

 We will begin with an algorithm (idea), and show how the
algorithm is transformed into a C program
(implementation).

 This brings back (reminds you) our very first lecture: the
importance of beginning with an algorithm.

2. Introduction to Searching (1/2)
Searching and Sorting Unit20 - 7 NUS

 Searching is a common task that we carry out without
much thought everyday.
 Searching for a location in a map
 Searching for the contact of a particular person
 Searching for a nice picture for your project report
 Searching for a research paper required in your course

 In this lecture, you will learn how to search for an item
(sometimes called a search key) in an array.

2. Introduction to Searching (2/2)
Searching and Sorting Unit20 - 8 NUS

 Problem statement:
Given a list (collection of data) and a search key X, return the
position of X in the list if it exists.
For simplicity, we shall assume there are no duplicate values
in the list.

 We will count the number of comparisons the algorithms
make to analyze their performance.
 The ideal searching algorithm will make the least possible

number of comparisons to locate the desired data.
 We will introduce worst-case scenario.
 (This topic is called analysis of algorithms, which will be formally

introduced in CS2040. Here, we will give an informal
introduction just for an appreciation.)

3. Linear Search (1/3)
Searching and Sorting Unit20 - 9 NUS

 Also known as Sequential Search
 Idea: Search the list from one end to the other end in

linear progression.
 Algorithm:

// Search for key in list A with n items
linear_search(A, n, key)
{
 for i = 0 to n-1
 if Ai is key then report i
}

87 12 51 9 24 63

Example: Search for 24 in this list

no no no no yes!

 Question: What to report if key is not found?
 Aim for a clean design

Return 4

3. Linear Search: Demo #1 (2/3)
Searching and Sorting Unit20 - 10 NUS

 If the list is an array, how would you implement the
Linear Search algorithm?
// To search for key in arr using linear search
// Return index if found; otherwise return -1
int linearSearch(int arr[], int size, int key) {
 int i;

 for (i=0; i<size; i++)
 if (key == arr[i])
 return i;
 return -1;
}

See linear_search.c for full program

 Question: What if array contains duplicate values of the
key?

Useful and common technique

Index of the first element found will be returned.

3. Linear Search: Performance (3/3)
Searching and Sorting Unit20 - 11 NUS

 We use the number of comparisons here as a
rough basis for measurement.

 Analysis is done for best case, average case,
and worst case. We will focus on the worst case.

 For an array with n elements, in the worst case,
 What is the number of comparisons in linear search

algorithm?

 Under what circumstances does the worst case
happen?

n comparisons
This is called linear time algorithm: O(n)

(a) Not found
(b) Found at the last element

Worst-case Scenario

Searching and Sorting Unit20 - 12 NUS

4. Binary Search (1/6)
Searching and Sorting Unit20 - 13 NUS

 You are going to witness a radically different approach,
one that has become the basis of many well-known
algorithms in Computer Science!

 The idea is simple and fantastic, but when applied on the
searching problem, it has this pre-condition that the list
must be sorted before-hand.

 How the data is organized (in this case, sorted) usually
affects how we choose/design an algorithm to access
them.

 In other words, sometimes (actually, very often) we seek
out new way to organize the data so that we can process
them more efficiency. More of this in CS2040 Data
Structures and Algorithms.

Being Organized…

Searching and Sorting Unit20 - 14 NUS

4. Binary Search (2/6)
Searching and Sorting Unit20 - 15 NUS

 The Binary Search algorithm
 Look for the key in the middle position of the list.

Either of the following 2 cases happens:
 If the key is smaller than the middle element,

“discard” the right half of the list and repeat the
process.

 If the key is greater than the middle element,
“discard” the left half of the list and repeat the
process.

 Terminating condition: when the key is found, or
when all elements have been “discarded”.

Binary Search
• Given a sorted array: A with n elements
• Goal: Search for x

• x may or may not be in the array A

A[0] A[n-1]

NUS Searching and Sorting Unit20 - 16

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2
 A[0] A[n-1] A[M]

NUS Searching and Sorting Unit20 - 17

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2

• If A[M] == x

• Yeah.. we are done. x is found!

A[0] A[n-1] A[M]

NUS Searching and Sorting Unit20 - 18

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2

• If A[M] > x

• Then all of the right side with indice M+1 to n-1 will be all larger
than x

• No need to search

A[0] A[n-1] A[M]

NUS Searching and Sorting Unit20 - 19

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2

• If A[M] > x

• Repeat the process with this smaller array with indices from 0 to M-
1

A[0] A[M-1]

NUS Searching and Sorting Unit20 - 20

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2

• If A[M] < x

• Then all of the left side with indices 0 to M-1 will be all smaller than
x

• No need to search

A[0] A[n-1] A[M]

NUS Searching and Sorting Unit20 - 21

Binary Search
• Goal: Search for x
• Check the middle one

• With index M = (0 + n-1) / 2

• If A[M] < x

• Repeat the process with this smaller array with indices from M+1 to
n-1

A[n-1] A[M+1]

NUS Searching and Sorting Unit20 - 22

Pseudocode for Array Size = N
• Let it be L = 0, R = N-1

• L and R are the two indices of the left and right bound
• Repeat

• The middle index M = (L + R) / 2
• If A[M] == x

• Return the index M
• If A[M] > x

• R = M -1
• Else

• L = M +1

• Repeat until the gap is closed
• x is not found in the array

NUS Searching and Sorting Unit20 - 23

4. Binary Search (3/6)
Searching and Sorting Unit20 - 24 NUS

 Example: Search key = 23

5 12 17 23 38 44 77 84 90
[0] [1] [2] [3] [4] [5] [6] [7] [8] arr

1. low = 0, high = 8, mid = (0+8)/2 = 4
2. low = 0, high = 3, mid = (0+3)/2 = 1
3. low = 2, high = 3, mid = (2+3)/2 = 2

4. low = 3, high = 3, mid = (3+3)/2 = 3

Found!
Return 3

arr[4] = 38 > 23
arr[1] = 12 < 23
arr[2] = 17 < 23

arr[3] = 23 == 23

4. Binary Search (4/6)
Searching and Sorting Unit20 - 25 NUS

 In binary search, each step eliminates the problem size
(array size) by half!
 The problem size gets reduced to 1 very quickly! (see slide after

next.)

 This is a simple yet powerful strategy, of halving the
solution space in each step
 This is a BIG DEAL in problem solving (remember the Santa

Claus’ dirty socks problem in your first discussion session?)

 Such strategy, a special case of divide-and-conquer
paradigm, can be naturally implemented using recursion.

 But for now, we will stick to an iterative solution (loop). (We
will see its implementation using recursion when we cover recursion.)

4. Binary Search (5/6)
Searching and Sorting Unit20 - 26 NUS

// To search for key in sorted arr using binary search
// Return index if found; otherwise return -1
int binarySearch(int arr[], int size, int key) {

 int low = 0, high = size – 1, mid = (low + high)/2;

}

binary_search.c

 while ((low <= high) && (arr[mid] != key)) {
 if (key < arr[mid])
 high = mid - 1;
 else
 low = mid + 1;
 mid = (low + high)/2;
 }
 if (low > high) return -1;
 else return mid;

4. Binary Search (6/6)
Searching and Sorting Unit20 - 27 NUS

 Worst-case analysis

Array size
n

Linear Search
(n comparisons)

Binary search

100 100 ≈7
1,000 1,000 ≈10

10,000 10,000 ≈14
100,000 100,000 ?

1,000,000 1,000,000 ?
109 109 ?

≈17
≈20
≈30

(log2 n comparisons)

This is called log2n algorithm, or O(log2n)

Why log N?
• If you have N items, and each time you reduce the search

space by half
• How many steps do you need to half until the search

space is only 1?
• Let S be the number of steps
 𝑁 × (1

2
)𝑆= 1

 𝑁 = 2𝑆
 log𝑁 = 𝑆 log 2
 𝑆 = log𝑁/ log 2

NUS Searching and Sorting Unit20 - 28

Order of Growth

y = x

y = log2 x

Linear
Worst case: N

Binary Search
Log2 N

NUS Searching and Sorting Unit20 - 29

Ok, now I know how to search a number
quickly

NUS Searching and Sorting Unit20 - 30

Computation
• Usually we rely on the computer to do tasks that are

• repetitive
• e.g. computing a function with series like cosine

• involving a large volume of data
• Searching for a NRIC in the many millions of Singaporeans

NUS Searching and Sorting Unit20 - 31

Search?
• Simple problem
• Let’s say we have a file containing all the names of

Singaporeans
• 3.4millions in 2015

• You want to check
• Is “Alan Cheng Ho Lun” a Singaporean?

NUS Searching and Sorting Unit20 - 32

Google?

NUS Searching and Sorting Unit20 - 33

How much data does Google handle?
• About 10 to 15 Exabyte of data

• 1 Exabyte(EB)= 1024 Petabyte(PB)
• 1 Petabyte(PB) = 1024 Terabytes(TB)
• 1 Terabyte(PB) = 1024 Gigabytes(TB)

• = 4 X 256GB iPhone

• So Google is handling about 60 millions of iPhones

NUS Searching and Sorting Unit20 - 34

Let’s calculate
• 400Mb of data needs 6 seconds

• I did an “anyhow” program to generate a lot of numbers worth
400Mb of data

• 15 Exabyte of data needs how long?
• 15 EB = 15 x 1024 x 1024 x 1024 x 1024 MB
• To search through 15EB of data…..

• 7845 years…..

• If we do it with Binary Search
• log2 (15EB) = 43 steps!!!!!

NUS Searching and Sorting Unit20 - 35

Speed Improvement
• If the number of data N is even larger, the improvement in

speed is even greater

y = x

y = log2 x

NUS Searching and Sorting Unit20 - 36

The Magic?
• Binary search vs Linear search
• However, one step back

• The data has to be sorted
• The time needed for sorting is 𝑛 log𝑛
• Slower than linear search
• But we only have to do it once
• Is it?

• Can we assume that we can sort it once for all?

NUS Searching and Sorting Unit20 - 37

Data Structure and Algorithm
• But what if the data is dynamic?
• Even after sorted, there will be new items added or old

items removed from the list?
• How do we maintain a dynamic list that is sorted all the

time?
• This is the study of Data Structure

• Basically, how fast we can compute if the data size N is very large

NUS Searching and Sorting Unit20 - 38

Data Structure
• How do you organize your data to improve your

performance
• Sorted list, trees, graphs, heaps, hash tables, etc.

• British Library

• 170m+
• Library of Congress

• 164m+

NUS Searching and Sorting Unit20 - 39

Algorithm
• What is the way I do my computation?
• Named for al-Khwarizmi (780-850)

• Persian mathematician

NUS Searching and Sorting Unit20 - 40

Sorting

Searching and Sorting Unit20 - 41 NUS

5. Introduction to Sorting (1/2)
Searching and Sorting Unit20 - 42 NUS

 Sorting is any process of arranging items in some
sequence and/or in different sets – Wikipedia.

 Sorting is important because once a set of items is sorted,
many problems (such as searching) become easy.
 Searching can be speeded up. (From linear search to binary

search)
 Determining whether the items in a set are all unique.
 Finding the median item in a list.
 Many others…

5. Introduction to Sorting (2/2)
Searching and Sorting Unit20 - 43 NUS

 Problem statement:
 Given a list of n items, arrange the items

into ascending order.
 We will implement the list as an integer array.
 We will introduce two basic sort algorithms.
 We will count the number of comparisons the algorithms

make to analyze their performance.
 The ideal sorting algorithm will make the least possible number of

comparisons to arrange data in a designated order.

 We will compare the algorithms by analyzing their worst-
case performance.

6. Selection Sort (1/6)
Searching and Sorting Unit20 - 44 NUS

 Selection Sort algorithm
Step 1: Find the smallest element in the list (find_min)
Step 2: Swap this smallest element with the element in

the first position. (Now, the smallest element is
in the right place.)

Step 3: Repeat steps 1 and 2 with the list having one
fewer element (i.e. the smallest element just
found and its place is “discarded” from further
processing).

6. Selection Sort (2/6)
Searching and Sorting Unit20 - 45 NUS

n = 9

23 17 5 90 12 44 38 84 77
[0] [1] [2] [3] [4] [5] [6] [7] [8] array

1st pass:

first min

5 17 23 90 12 44 38 84 77 2nd pass:

first min

5 12 23 90 17 44 38 84 77 3rd pass:

first min

5 12 17 90 23 44 38 84 77 4th pass:

first min

6. Selection Sort (3/6)
Searching and Sorting Unit20 - 46 NUS

n = 9

5 12 17 23 90 44 38 84 77 5th pass:

first min

5 12 17 23 38 44 90 84 77 6th pass:

first min

5 12 17 23 38 44 90 84 77 7th pass:

first min

5 12 17 23 38 44 77 84 90 8th pass:

first min

5 12 17 23 38 44 77 84 90 Final array:

Q: How many passes for
an array with n elements?

n – 1 passes

6. Selection Sort: Demo #2 (4/6)
Searching and Sorting Unit20 - 47 NUS

// To sort arr in increasing order
void selectionSort(int arr[], int size) {
 int i, start, min_index, temp;

 for (start = 0; start < size-1; start++) {
 // each iteration of the for loop is one pass

 // find the index of minimum element
 min_index = start;
 for (i = start+1; i < size; i++)
 if (arr[i] < arr[min_index])
 min_index = i;

 // swap minimum element with element at start index
 temp = arr[start];
 arr[start] = arr[min_index];
 arr[min_index] = temp;
 }
}

See selection_sort.c for full program

6. Selection Sort: Performance (5/6)
Searching and Sorting Unit20 - 48 NUS

 We choose the number of comparisons as our basis of analysis.
 Comparisons of array elements occur in the inner loop, where the

minimum element is determined.
 Assuming an array with n elements. Table below shows the number

of comparisons for each pass.
 The total number of comparisons is calculated in the formula below.
 Such an algorithm is called an O(n2) algorithm, or quadratic

algorithm, in terms of running time complexity.
 Pass #comparisons

1 n – 1
2 n – 2
3 n – 3
… …
n – 1 1

6. Selection Sort (6/6)
Searching and Sorting Unit20 - 49 NUS

 Selection sort is classified under exchange sort, where
elements are exchanged in the process.

 We could search for the minimum element as described
earlier, or search for the maximum element and exchange
it with the last element of the working array (assuming we
sort in ascending order).

7. Bubble Sort (1/5)
Searching and Sorting Unit20 - 50 NUS

 Selection sort makes one exchange at the end of each
pass.

 What if we make more than one exchange during each
pass?

 The key idea Bubble sort is to make pairwise
comparisons and exchange the positions of the pair if
they are in the wrong order.

Idea: Like Bubbles

Searching and Sorting Unit20 - 51 NUS

7. Bubble Sort: One Pass of Bubble Sort (2/5)

Searching and Sorting Unit20 - 52 NUS

0 1 2 3 4 5 6 7 8

23 17 5 90 12 44 38 84 77

17 23 5 90 12 44 38 84 77

17 5 23 90 12 44 38 84 77

17 5 23 12 90 44 38 84 77

17 5 23 12 44 90 38 84 77

17 5 23 12 44 38 90 84 77

17 5 23 12 44 38 84 90 77

17 5 23 12 44 38 84 77 90

exchange

ok

exchange

exchange

exchange

exchange

exchange

exchange

Done! Q: Is the array sorted?
Q: What have we achieved?

7. Bubble Sort: Demo #3 (3/5)
Searching and Sorting Unit20 - 53 NUS

// To sort arr in increasing order
void bubbleSort(int arr[], int size) {
 int i, limit, temp;

 for (limit = size-2; limit >= 0; limit--) {
 // limit is where the inner loop variable i should end

 for (i=0; i<=limit; i++) {
 if (arr[i] > arr[i+1]) { // swap arr[i] with arr[i+1]
 temp = arr[i];
 arr[i] = arr[i+1];
 arr[i+1] = temp;
 }
 }
 }
}

See bubble_sort.c for full program

7. Bubble Sort: Performance (4/5)
Searching and Sorting Unit20 - 54 NUS

 Bubble sort, like selection sort, requires n – 1 passes for an array
with n elements.

 The comparisons occur in the inner loop. The number of comparisons
in each pass is given in the table below.

 The total number of comparisons is calculated in the formula below.
 Like Selection sort, Bubble sort is also an O(n2) algorithm, or

quadratic algorithm, in terms of running time complexity.

Pass #comparisons
1 n – 1
2 n – 2
3 n – 3
… …
n – 1 1

7. Bubble Sort: Enhanced version (5/5)
Searching and Sorting Unit20 - 55 NUS

 It is possible to enhance Bubble sort algorithm to reduce
the number of passes.

 Suppose that in a certain pass, no swap is needed. This
implies that the array is already sorted, and hence the
algorithm may terminate without going on to the next
pass.

 You will implement this enhanced version in your
discussion session.

8. More Sorting Algorithms
Searching and Sorting Unit20 - 56 NUS

 We have introduced 2 basic sort algorithms: Selection
Sort and Bubble Sort. Together with Insertion Sort
algorithm, these 3 are the simplest sorting algorithms.

 However, they are very slow, as their running time
complexity is quadratic, or O(n2), where n is the array
size.

 Faster sorting algorithms exist and are covered in more
advanced modules.

 In CS2040, you will learn more advanced sorting
algorithms with better running-time efficiency: Quick Sort,
Merge Sort, Radix Sort, etc.

9. Animated Sorting Algorithms
Searching and Sorting Unit20 - 57 NUS

 There are a number of animated sorting algorithms on the
Internet.

 Here are just a few sites:
 Visualgo (http://visualgo.net): Project under Dr Steven Halim
 http://www.sorting-algorithms.com/
 http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html

 There are also folk dances based on sorting!
 Selection sort with Gypsy folk dance

http://www.youtube.com/watch?v=Ns4TPTC8whw

 Bubble sort with Hungarian folk dance
http://www.youtube.com/watch?v=lyZQPjUT5B4

http://visualgo.net/
http://www.sorting-algorithms.com/
http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html
http://www.youtube.com/watch?v=Ns4TPTC8whw
http://www.youtube.com/watch?v=lyZQPjUT5B4

Summary
Searching and Sorting Unit20 - 58 NUS

 In this unit, you have learned about
 2 search algorithms: Linear (sequential) Search and

Binary Search
 2 basic sort algorithms: Selection Sort and Bubble

Sort.

	http://www.comp.nus.edu.sg/~cs1010/
	Unit 20: Searching and Sorting
	Unit 20: Searching and Sorting (1/2)
	Unit 20: Searching and Sorting (2/2)
	1. Overall Introduction
	1. Overall Introduction
	2. Introduction to Searching (1/2)
	2. Introduction to Searching (2/2)
	3. Linear Search (1/3)
	3. Linear Search: Demo #1 (2/3)
	3. Linear Search: Performance (3/3)
	Worst-case Scenario
	4. Binary Search (1/6)
	Being Organized…
	4. Binary Search (2/6)
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Pseudocode for Array Size = N
	4. Binary Search (3/6)
	4. Binary Search (4/6)
	4. Binary Search (5/6)
	4. Binary Search (6/6)
	Why log N?
	Order of Growth
	Ok, now I know how to search a number quickly
	Computation
	Search?
	Google?
	How much data does Google handle?
	Let’s calculate
	Speed Improvement
	The Magic?
	Data Structure and Algorithm
	Data Structure
	Algorithm
	Sorting
	5. Introduction to Sorting (1/2)
	5. Introduction to Sorting (2/2)
	6. Selection Sort (1/6)
	6. Selection Sort (2/6)
	6. Selection Sort (3/6)
	6. Selection Sort: Demo #2 (4/6)
	6. Selection Sort: Performance (5/6)
	6. Selection Sort (6/6)
	7. Bubble Sort (1/5)
	Idea: Like Bubbles
	7. Bubble Sort: One Pass of Bubble Sort (2/5)
	7. Bubble Sort: Demo #3 (3/5)
	7. Bubble Sort: Performance (4/5)
	7. Bubble Sort: Enhanced version (5/5)
	8. More Sorting Algorithms
	9. Animated Sorting Algorithms
	Summary

