
Admin
• 16 Feb = CNY

• Make-up
• The whole set of slides is in IVLE

• Some for self-read, will skip some in lecture

http://www.comp.nus.edu.sg/~cs1010/

UNIT 4

Overview of C Programming

http://www.comp.nus.edu.sg/~cs1010/
http://www.comp.nus.edu.sg/~cs1010

Let’s start!

CS1010 (AY2016/7 Semester 1) Unit3 - 3

Unit 3: Overview of C Programming

Objectives:
 Learn basic C constructs, interactive input, output,

and arithmetic operations
 Learn some data types and the use of variables to

hold data
 Understand basic programming style

References:
 Chapter 2 Variables, Arithmetic Expressions and

Input/Output
 Chapter 3 Lessons 3.1 Math Library Functions and 3.2

Single Character Data

CS1010 (AY2016/7 Semester 1) Unit3 - 4 © NUS

Unit 3: Overview of C Programming

1. A Simple C Program
2. Variables and Data Types
3. Program Structure

 Preprocessor directives
 Input
 Compute
 Output

4. Math Functions
5. Programming Style
6. Common Mistakes

CS1010 (AY2016/7 Semester 1) Unit3 - 5 © NUS

Introduction
CS1010 (AY2016/7 Semester 1) Unit3 - 6

 C: A general-purpose computer programming
language developed in 1972 by Dennis Ritchie
(1941 – 2011) at Bell Telephone Lab for use
with the UNIX operation System

 We will follow the ANSI C (C90) standard

© NUS

http://en.wikipedia.org/wiki/ANSI_C

http://en.wikipedia.org/wiki/ANSI_C
http://en.wikipedia.org/wiki/ANSI_C

CS1010 (AY2016/7 Semester 1) Unit3 - 7

Quick Review: Edit, Compile, Execute
CS1010 (AY2016/7 Semester 1) Unit3 - 8 © NUS

produces
Source code

first.c Edit
eg: vim first.c

produces
Executable code

a.out Compile
eg: gcc first.c

produces Execute
eg: a.out The value of c is 3.

Program output

Compile

Execute

Edit

Incorrect
result?

Cannot
compile?

Test, test, and test!

The Simple C Program
CS1010 (AY2016/7 Semester 1) Unit1 - 9 © NUS

 Use vim to create this C program first.c

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 printf(“ @..@\n”);

 return 0;
}

The Less Simple C Program
CS1010 (AY2016/7 Semester 1) Unit1 - 10 © NUS

 Use vim to create this C program second.c
 Hint: copy first.c to second.c and modify

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 2001;
 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

Variables

VARIABLES

CS1010 (AY2016/7 Semester 1) Unit3 - 11

A Simple C Program (2/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 12 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

Sample run

$ gcc –Wall Week2_MileToKm.c
$ a.out
Enter distance in miles: 10.5
That equals 16.89 km.

What Happens in the Computer Memory
CS1010 (AY2016/7 Semester 1) Unit3 - 13 © NUS

At the beginning

memory

Executable code of
Unit3_MileToKm.c

miles

?

?
kms

After user enters: 10.5 to

scanf("%f", &miles);

memory

Executable code of
Unit3_MileToKm.c

miles

10.5

?

kms

After this line is executed:

kms = KMS_PER_MILE * miles;

memory

Executable code of
Unit_MileToKm.c

miles

10.5

16.89
kms

Do not assume that
uninitialised variables
contain zero! (Very
common mistake.)

Variables
CS1010 (AY2016/7 Semester 1) Unit3 - 14 © NUS

 Data used in a program are stored in variables
 Every variable is identified by a name

(identifier), has a data type, and contains a
value which could be modified

 A variable is declared with a data type
 Eg: int count; // variable ‘count’ of type ‘int’

 Variables may be initialized during declaration:
 Eg: int count = 3; // count is initialized to 3

 Without initialization, the variable contains an
unknown value (Cannot assume that it is zero)

The Less Simple C Program
CS1010 (AY2016/7 Semester 1) Unit1 - 15 © NUS

 Use vim to create this C program second.c

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 2001;
 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

The Less Simple C Program
CS1010 (AY2016/7 Semester 1) Unit1 - 16 © NUS

 Use vim to create this C program second.c

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a=2001,b=4002,c;

 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

What is the value of “c” before the next line?

What if
CS1010 (AY2016/7 Semester 1) Unit1 - 17 © NUS

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;

 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

a

b

c

4002

Read the data in a and b, add
them and put the sum in c ?

?

Variables: Mistakes in Initialization
CS1010 (AY2016/7 Semester 1) Unit3 - 18 © NUS

 Incorrect: No initialization
int count;

count = count + 12; Does ‘count’ contain 12

after this statement?

 Redundant initialization
int count = 0;

count = 123;

Initialization here is
redundant.

Personality Type
• What attitude does you

usually contain?

• Data type
• What type of data can the

variable contain?

CS1010 (AY2016/7 Semester 1) Unit3 - 19

Data Types
CS1010 (AY2016/7 Semester 1) Unit3 - 20 © NUS

 To determine the type of data a variable may hold
 Basic data types in C (more will be discussed in class later):

 int: For integers
 4 bytes (in sunfire); -2,147,483,648 (-231) through

+2,147,483,647 (231 – 1)
 float or double: For real numbers

 4 bytes for float and 8 bytes for double (in sunfire)
 Eg: 12.34, 0.0056, 213.0
 May use scientific notation; eg: 1.5e-2 and 15.0E-3 both refer

to 0.015; 12e+4 and 1.2E+5 both refer to 120000.0
 Not exact!!!!!!!!!!

 char: For individual characters
 Enclosed in a pair of single quotes
 Eg: 'A', 'z', '2', '*', ' ', '\n'

http://www.tutorialspoint.com/ansi_c/c_basic_datatypes.htm

http://www.tutorialspoint.com/ansi_c/c_basic_datatypes.htm
http://www.tutorialspoint.com/ansi_c/c_basic_datatypes.htm

All Data Types in C

CS1010 (AY2016/7 Semester 1) Unit3 - 21

Exercise #1: Size of Data Types
CS1010 (AY2016/7 Semester 1) Unit3 - 22 © NUS

 We will do an exercise in class to explore the
aforementioned information about data types
 Unit3_DataTypes.c
 Copy the above program into your current directory

cp ~cs1010/lect/prog/unit3/Unit3_DataTypes.c .

 Or download program from CS1010 Lectures page
and transfer it into your UNIX account:
http://www.comp.nus.edu.sg/~cs1010/2_resources/lectures.html

Pathname of source file
Destination directory;

‘.’ means current directory

http://www.comp.nus.edu.sg/~cs1010/2_resources/lectures.html

Notes (1/2)
Overview of C Programming Unit4 - 23 Aaron Tan, NUS

 Basic steps of a simple program
1. Read inputs (scanf)
2. Compute
3. Print outputs (printf)

 For now we will use interactive inputs
 Standard input stream (stdin) – default is keyboard
 Use the scanf() function

 Assume input data always follow specification
 Hence no need to validate input data (for now)

 Outputs
 Standard output stream (stdout) – default is monitor
 Use the printf() function

Notes (2/2)
Overview of C Programming Unit4 - 24 Aaron Tan, NUS

 Include header file <stdio.h> to use scanf() and
printf()
 Include the header file (for portability sake) even

though some systems do no require this to be done

 Important! (CodeCrunch issue)
 Make sure you have a newline character (‘\n’) at the

end of your last line of output, or CodeCrunch may
mark your output as incorrect.

printf("That equals %9.2f km.\n", kms);

My own suggestion
• Create a “blank” c template

CS1010 (AY2016/7 Semester 1) Unit3 - 25

#include <stdio.h>

int main(void) {

 return 0;
}

A Simple C Program (1/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 26

 General form of a simple C program

© NUS

preprocessor directives
main function header
{
 declaration of variables
 executable statements
} “Executable statements”

usually consists of 3 parts:
 Input data
 Computation
 Output results

The Less Simple C Program
CS1010 (AY2016/7 Semester 1) Unit1 - 27 © NUS

 Use vim to create this C program first.c

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 2001;
 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

preprocessor directives

executable statements

main function header

declaration of variables

A Simple C Program (2/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 28 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

Sample run

$ gcc –Wall Week2_MileToKm.c
$ a.out
Enter distance in miles: 10.5
That equals 16.89 km.

A Simple C Program (3/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 29 © NUS

// Converts distance in miles to kilometres.

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

preprocessor
directives

standard header file

comments

constant

reserved
words

variables

functions

special
symbols

punctuations

Program Structure

CS1010 (AY2016/7 Semester 1) Unit3 - 30

Basic Structure of a Program

CS1010 (AY2016/7 Semester 1) Unit3 - 31

Program Structure
CS1010 (AY2016/7 Semester 1) Unit3 - 32 © NUS

 A basic C program has 4 main parts:
 Preprocessor directives:

 eg: #include <stdio.h>, #include <math.h>, #define PI 3.142
 Input: through stdin (using scanf), or file input
 Compute: through arithmetic operations
 Output: through stdout (using printf), or file output

We will learn
file input/output
later.

A Simple C Program (2/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 33 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Preprocessor
directives

Input

Compute

Output

Preprocessor
Input
Compute
Output

Program Structure: Preprocessor Directives (1/2)

CS1010 (AY2016/7 Semester 1) Unit3 - 34 © NUS

 The C preprocessor provides the following
 Inclusion of header files
 Macro expansions
 Conditional compilation
 For now, we will focus on inclusion of header files and simple

application of macro expansions

 Inclusion of header files
 To use input/output functions such as scanf() and printf(), you

need to include <stdio.h>: #include <stdio.h>
 To use mathematical functions, you need to include <math.h>:

#include <math.h>

Preprocessor Directives
CS1010 (AY2016/7 Semester 1) Unit3 - 35 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

CS1010 (AY2016/7 Semester 1) Unit3 - 36

Preprocessor Directives
CS1010 (AY2016/7 Semester 1) Unit3 - 37 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

The whole “stdio.h” inserted here

Program Structure: Preprocessor Directives (2/2)

CS1010 (AY2016/7 Semester 1) Unit3 - 38 © NUS

 Macro expansions
 One of the uses is to define a macro for a constant value
 Eg: #define PI 3.142 // use all CAP for macro

#define PI 3.142

int main(void) {
 ...
 areaCircle = PI * radius * radius;
 volCone = PI * radius * radius * height / 3.0;
}

Preprocessor replaces all instances
of PI with 3.142 before passing the
program to the compiler.

int main(void) {
 ...
 areaCircle = 3.142 * radius * radius;
 volCone = 3.142 * radius * radius * height / 3.0;
}

What the compiler sees:

Preprocessor
Input
Compute
Output

Preprocessor Directives
CS1010 (AY2016/7 Semester 1) Unit3 - 39 © NUS

// Converts distance in miles to kilometres.
#include <stdio.h> /* printf, scanf definitions */

#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void) {
 float miles, // input – distance in miles
 kms; // output – distance in kilometres

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = 1.609 * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

The whole “stdio.h” inserted here

OUTPUT

CS1010 (AY2016/7 Semester 1) Unit3 - 40

Our “second.c”
CS1010 (AY2016/7 Semester 1) Unit1 - 41 © NUS

 Use vim to create this C program second.c

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 2001;
 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

Program Structure: Input/Output (1/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 42 © NUS

%d and %lf are examples of format specifiers; they are placeholders
for values to be displayed or read

Placeholder Variable Type Function Use
%c char printf / scanf
%d int printf / scanf
%f float or double printf
%f float scanf
%lf double scanf
%e float or double printf (for scientific notation)

 Examples of format specifiers used in printf():
 %5d: to display an integer in a width of 5, right justified
 %8.3f: to display a real number (float or double) in a width of 8, with 3

decimal places, right justified
 See Table 2.3 (page 65) for sample displays
 Note: For scanf(), just use the format specifier without indicating

width, decimal places, etc.

Preprocessor
Input
Compute
Output

How to …
• Write a program and output this:

CS1010 (AY2016/7 Semester 1) Unit3 - 43

Program Structure: Input/Output (2/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 44 © NUS

 \n is an example of escape sequence
 Escape sequences are used in printf() function for certain special

effects or to display certain characters properly
 See Table 1.4 (pages 32 – 33)
 These are the more commonly used escape sequences:

Escape
sequence

Meaning Result

\n New line Subsequent output will appear on the next line
\t Horizontal tab Move to the next tab position on the current line
\" Double quote Display a double quote "
%% Percent Display a percent character %

Note the error in Table 1.4. It should be %% and not \%

Preprocessor
Input
Compute
Output

INPUT

CS1010 (AY2016/7 Semester 1) Unit3 - 45

Input
CS1010 (AY2016/7 Semester 1) Unit1 - 46 © NUS

 What if I want to input different values of a
and b by keyboard?

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 2001;
 b = 4002;
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

Input
CS1010 (AY2016/7 Semester 1) Unit1 - 47 © NUS

 What if I want to input different values of a
and b by keyboard?

Compile

Execute

Edit

#include <stdio.h>

int main(void) {
 int a,b,c;
 printf(“Input the first number a: ”);
 scanf(“%d”, &a);
 printf(“Input the second number b: ”);
 scanf(“%d”, &b);
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

Program Structure: Input/Output (3/3)
CS1010 (AY2016/7 Semester 1) Unit3 - 48 © NUS

 Input/output statements:
 printf (format string, print list);
 printf (format string);
 scanf(format string, input list);

age
20

Address of variable
‘age’ varies each
time a program is
run.

One version:
int age;
double cap; // cumulative average point
printf("What is your age? ");
scanf("%d", &age);
printf("What is your CAP? ");
scanf("%lf", &cap);
printf("You are %d years old, and your CAP is %f\n", age, cap);

Unit3_InputOutput.c
Another version:
int age;
double cap; // cumulative average point
printf("What are your age and CAP? ");
scanf("%d %lf", &age, &cap);
printf("You are %d years old, and your CAP is %f\n", age, cap);

Unit3_InputOutputV2.c

“age” refers to value in the variable age.
“&age” refers to (address of) the memory
cell where the value of age is stored.

Preprocessor
Input
Compute
Output

Input
CS1010 (AY2016/7 Semester 1) Unit1 - 49 © NUS

 What if I want to input different values of a
and b by keyboard?

#include <stdio.h>

int main(void) {
 int a,b,c;
 printf(“Input the first number a: ”);
 scanf(“%d”, &a);
 printf(“Input the second number b: ”);
 scanf(“%d”, &b);
 c = a + b;
 printf(“ The value of %d + %d = %d\n”,a,b,c);
 return 0;
}

MOST
IMPORANTE FOR

INPUT!!!!!!!

No need for output

Exercise #2: Testing scanf() and printf()
CS1010 (AY2016/7 Semester 1) Unit3 - 50 © NUS

 We will do an exercise in class to explore scanf()
and printf() functions
 Unit3_TestIO.c
 Copy the above program into your current directory

 cp ~cs1010/lect/prog/unit3/Unit3_TestIO.c .

 Or download program from CS1010 Lectures page
and transfer it into your UNIX account:
http://www.comp.nus.edu.sg/~cs1010/2_resources/lectures.html

http://www.comp.nus.edu.sg/~cs1010/2_resources/lectures.html

Exercise #3: Distance Conversion (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 51 © NUS

 Convert distance from miles to kilometres
 Unit3_MileToKm.c
 The program is given (which you can copy to your

directory as earlier instructed), but for this exercise we
want you to type in the program yourself as a practice
in using vim

 The program is shown in the next slide

Exercise #3: Distance Conversion (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 52 © NUS

// Unit3_MileToKm.c
// Converts distance in miles to kilometers.
#include <stdio.h>
#define KMS_PER_MILE 1.609

int main(void) {
 float miles, // input - distance in miles.
 kms; // output - distance in kilometers

 /* Get the distance in miles */
 printf("Enter distance in miles: ");
 scanf("%f", &miles);

 // Convert the distance to kilometres
 kms = KMS_PER_MILE * miles;

 // Display the distance in kilometres
 printf("That equals %9.2f km.\n", kms);

 return 0;
}

Unit3_MileToKm.c

Computation

CS1010 (AY2016/7 Semester 1) Unit3 - 53

Program Structure: Compute (1/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 54 © NUS

 Computation is through function
 So far, we have used one function: int main(void)

 main() function: where execution of program begins

 A function body has two parts
 Declarations statements: tell compiler what type of memory cells

needed
 Executable statements: describe the processing on the memory

cells

int main(void) {

 /* declaration statements */

 /* executable statements */

 return 0;

}

Preprocessor
Input
Compute
Output

Program Structure: Compute (2/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 55 © NUS

Preprocessor
Input
Compute
Output

 Declaration Statements: To declare use of variables

int count, value;

Data type Names of variables

 User-defined Identifier
 Name of a variable or function
 May consist of letters (a-z, A-Z), digits (0-9) and underscores (_),

but MUST NOT begin with a digit
 Case sensitive, i.e. count and Count are two distinct identifiers
 Guideline: Usually should begin with lowercase letter
 Must not be reserved words (next slide)
 Should avoid standard identifiers (next slide)
 Eg: Valid identifiers: maxEntries, _X123, this_IS_a_long_name

Invalid: 1Letter, double, return, joe’s, ice cream, T*S

Program Structure: Compute (3/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 56 © NUS

Preprocessor
Input
Compute
Output

 Reserved words (or keywords)
 Have special meaning in C
 Eg: int, void, double, return
 Complete list: http://c.ihypress.ca/reserved.html
 Cannot be used for user-defined identifiers (names of variables or

functions)

 Standard identifiers
 Names of common functions, such as printf, scanf
 Avoid naming your variables/functions with the same name of

built-in functions you intend to use

http://c.ihypress.ca/reserved.html

Program Structure: Compute (4/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 57 © NUS

Preprocessor
Input
Compute
Output

 Executable statements
 I/O statements (eg: printf, scanf)
 Computational and assignment statements

 Assignment statements
 Store a value or a computational result in a variable
 (Note: ‘=’ means ‘assign value on its right to the variable on

its left’; it does NOT mean equality)
 Left side of ‘=’ is called lvalue

Eg: kms = KMS_PER_MILE * miles;

Which lines are valid in C++

CS1010 (AY2016/7 Semester 1) Unit3 - 58

#include <stdio.h>

int main(void) {
 int a,b,c;
 a = 10;
 b = a + 5;
 a = f + 1;
 b = b + b;
 a = b + c;

 35 = a;
 a + b = 2;

 return 0;
}

ok
ok
NOT ok
ok
ok at compilation
May not be ok at run time
NOT ok
NOT ok

Program Structure: Compute (5/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 59 © NUS

Preprocessor
Input
Compute
Output

Eg: sum = sum + item;

 Examples of invalid assignment (result in compilation error “lvalue
required as left operand of assignment”):
 32 = a; // ’32’ is not a variable
 a + b = c; // ‘a + b’ is an expression, not variable

 Assignment can be cascaded, with associativity from right to left:
 a = b = c = 3 + 6; // 9 assigned to variables c, b and a
 The above is equivalent to: a = (b = (c = 3 + 6));
 which is also equivalent to:
 c = 3 + 6;

 b = c;
 a = b;

 Note: lvalue must be
assignable

Is this ok?

• I thought it was equivalent to

• But, no…. gcc understand this as:

CS1010 (AY2016/7 Semester 1) Unit3 - 60

#include <stdio.h>

int main(void) {
 int a,b,c;

 a = b + c = 3;

 return 0;
}

 a = b + (c = 3);

 a = (b + c) = 3;
WHY?!
Wait until your Compiler
class

Program Structure: Compute (6/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 61 © NUS

Preprocessor
Input
Compute
Output

 Side Effect:
 An assignment statement does not just assigns, it also has the

side effect of returning the value of its right-hand side
expression

 Hence a = 12; has the side effect of returning the value of 12,
besides assigning 12 to a

 Usually we don’t make use of its side effect, but sometimes we
do, eg:

 z = a = 12; // or z = (a = 12);
 The above makes use of the side effect of the assignment

statement a = 12; (which returns 12) and assigns it to z
 Side effects have their use, but avoid convoluted codes:
 a = 5 + (b = 10); // assign 10 to b, and 15 to a
 Side effects also apply to expressions involving other operators

(eg: logical operators). We will see more of this later.

Program Structure: Compute (7/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 62 © NUS

Preprocessor
Input
Compute
Output

 Arithmetic operations
 Binary Operators: +, –, *, /, % (modulo or remainder)
 Left Associative (from left to right)

 46 / 15 / 2  (46 / 15) / 2  3 / 2  1
 19 % 7 % 3  (19 % 7) % 3  5 % 3  2

 Unary operators: +, –
 Right Associative

 x = – 23 p = +4 * 10

 Execution from left to right, respecting parentheses rule, and then
precedence rule, and then associative rule (next page)
 addition, subtraction are lower in precedence than multiplication,

division, and remainder
 Truncated result if result can’t be stored (the page after next)
 int n; n = 9 * 0.5; results in 4 being stored in n.

 Try out Unit3_ArithOps.c

Program Structure: Compute (8/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 63 © NUS

Preprocessor
Input
Compute
Output

 Arithmetic operators: Associativity & Precedence

Operator Type Operator Associativity
Primary expression
operators

() expr++ expr-- L to R

Unary operators * & + - ++expr --expr (typecast) R to L
Binary operators * / % L to R

+ -

Assignment
operators

= += -= *= /= %= R to L

Program Structure: Compute (9/9)
CS1010 (AY2016/7 Semester 1) Unit3 - 64 © NUS

Preprocessor
Input
Compute
Output

 Mixed-Type Arithmetic Operations
 int m = 10/4; means
 float p = 10/4; means
 int n = 10/4.0; means
 float q = 10/4.0; means
 int r = -10/4.0; means

m = 2;

p = 2.0;

n = 2;
q = 2.5;

r = -2;
Caution!

 Type Casting
 Use a cast operator to change the type of an expression

 syntax: (type) expression
int aa = 6; float ff = 15.8;
float pp = (float) aa / 4; means
int nn = (int) ff / aa; means
float qq = (float) (aa / 4); means

pp = 1.5;

qq = 1.0;

nn = 2;

Try out Unit3_MixedTypes.c and Unit3_TypeCast.c

IF NOT ENOUGH TIME
Jump to if-else

CS1010 (AY2016/7 Semester 1) Unit3 - 65

Exercise #4: Temperature Conversion
CS1010 (AY2016/7 Semester 1) Unit3 - 66 © NUS

 Instructions will be given out in class
 We will use this formula

𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
5
9

× (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 32)

Exercise #5: Freezer (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 67 © NUS

 Write a program freezer.c that estimates the temperature in a
freezer (in oC) given the elapsed time (hours) since a power failure.
Assume this temperature (T) is given by

 where t is the time since the power failure.

 Your program should prompt the user to enter how long it has been
since the start of the power failure in hours and minutes, both
values in integers.

 Note that you need to convert the elapsed time into hours in real
number (use type float)
 For example, if the user entered 2 30 (2 hours 30 minutes), you need

to convert this to 2.5 hours before applying the above formula.

20
2

4 2

−
+

=
t

tT

Exercise #5: Freezer (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 68 © NUS

 Refer to the sample run below. Follow the output format.
Enter hours and minutes since power failure: 2 45
Temperature in freezer = -13.63

 How long does it take the freezer to get to zero degree?
Which of the following is the closest answer?
a) 3 hours
b) 4 hours 10 minutes
c) 6 hours 30 minutes
d) 8 hours

 This exercise is mounted on CodeCrunch as a practice
exercise.

Math Functions (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 69 © NUS

 In C, there are many libraries offering functions for you
to use.

 Eg: scanf() and printf() – requires to include <stdio.h>
 In Exercise #5, for t2 you may use t*t, or the pow()

function in the math library: pow(t, 2)
 pow(x, y) //computes x raised to the power of y

 To use math functions, you need to
 Include <math.h> AND
 Compile your program with –lm option (i.e. gcc –lm …)

 See Tables 3.3 and 3.4 (pages 88 – 89) for some math
functions

Math Functions (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 70 © NUS

 Some useful math functions
 Function abs(x) from <stdlib.h>; the rest from <math.h>

Q: Since the parameters x
and y in pow() function are of
double type, why can we call
the function with pow(t, 2)?

A: Integer value can be
assigned to a double
variable/parameter.

Function prototype:
double pow(double x, double y)

function return type

Math Functions: Example (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 71 © NUS

 Program Unit3_Hypotenuse.c computes the hypotenuse
of a right-angled triangle given the lengths of its two
perpendicular sides

ℎ = (𝑎2 + 𝑏2)
h

a

b

Math Functions: Example (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 72 © NUS

// Unit3_Hypotenuse.c
// Compute the hypotenuse of a right-angled triangle.
#include <stdio.h>
#include <math.h>

int main(void) {
 float hypot, side1, side2;

 printf("Enter lengths of the 2 perpendicular sides: ");
 scanf("%f %f", &side1, &side2);

 hypot = sqrt(side1*side1 + side2*side2);
 // or hypot = sqrt(pow(side1, 2) + pow(side2, 2));

 printf("Hypotenuse = %6.2f\n", hypot);

 return 0;
}

Unit3_Hypotenuse.c

Remember to compile with –lm option!

Notes (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 73 © NUS

 Basic steps of a simple program
1. Read inputs (scanf)
2. Compute
3. Print outputs (printf)

 For now we will use interactive inputs
 Standard input stream (stdin) – default is keyboard
 Use the scanf() function

 Assume input data always follow specification
 Hence no need to validate input data (for now)

 Outputs
 Standand output stream (stdout) – default is monitor
 Use the printf() function

Notes (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 74 © NUS

 Include header file <stdio.h> to use scanf() and
printf()
 Include the header file (for portability sake) even

though some systems do no require this to be done

 Read
 Lessons 1.6 – 1.9

 Important! (CodeCrunch issue)
 Make sure you have a newline character (‘\n’) at the

end of your last line of output, or CodeCrunch may
mark your output as incorrect.

printf("That equals %9.2f km.\n", kms);

Type of Errors
CS1010 (AY2016/7 Semester 1) Unit3 - 75 © NUS

 Syntax errors (and warnings)
 Program violates syntax rules
 Warning happens, for example, incomparable use of types for

output
 Advise to use gcc –Wall to compile your programs

 Run-time errors
 Program terminates unexpectedly due to illegal operations, such

as dividing a number by zero, or user enters a real number for an
integer data type

 Logic errors
 Program produces incorrect result

 Undetected errors
 Exist if we do not test the program thoroughly enough

The process of correcting errors in
programs is called debugging.
This process can be very time-consuming!

Easiest to spot – the
compiler helps you!

Moderately easy to spot

Hard to spot

May never be spotted!

Programming Style (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 76 © NUS

 Programming style is just as important as
writing a correct program

 Refer to some C Style Guides on the CS1010
website
http://www.comp.nus.edu.sg/~cs1010/2_resources/online.html

 In your lab assignments, marks will be awarded
to style besides program correctness
 Correctness: 60%
 Style: 20%
 Design: 20%

http://www.comp.nus.edu.sg/~cs1010/2_resources/online.html

Programming Style (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 77 © NUS

 Identifier naming for variables and functions
 Use lower-case with underscore or capitalise first character

of every subsequent word (Eg: celsius, sum, second_max,
secondMax; NOT Celsius, SUM, SecondMax)

 Must be descriptive (Eg: numYears instead of ny, abc, xbrt)
 User-defined constants

 Use upper-case with underscore (Eg: KMS_PER_MILE,
DAYS_IN_YEAR)

 Consistent indentation
 Appropriate comments
 Spacing and blank lines
 And many others

In vim, typing
 gg=G
would auto-indent your
program nicely!

Type of Errors
Overview of C Programming Unit4 - 78 Aaron Tan, NUS

 Syntax errors (and warnings)
 Program violates syntax rules
 Warning happens, for example, incomparable use of types for

output
 Advise to use gcc –Wall to compile your programs

 Run-time errors
 Program terminates unexpectedly due to illegal operations, such

as dividing a number by zero, or user enters a real number for an
integer data type

 Logic errors
 Program produces incorrect result

 Undetected errors
 Exist if we do not test the program thoroughly enough

The process of correcting errors in programs is
called debugging.
This process can be very time-consuming!

Easiest to spot – the
compiler helps you!

Moderately easy to spot

Hard to spot

May never be spotted!

There are two types of people

CS1010 (AY2016/7 Semester 1) Unit3 - 79

#include <stdio.h>

int main(void) {
 int a,b,c;
 return 0;
}

#include <stdio.h>

int main(void)
{
 int a,b,c;
 return 0;
}

Common Mistakes (1/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 80 © NUS

 Not initialising variables
 Program may work on some machine but not on another!

int a, b;
a = b + 3; // but what is the value of b?

int x = 0;
x = 531;

 Unnecessary initialisation of variables
int x = 0;
scanf("%d", &x);

 Forgetting & in a scanf() statement

Cannot assume that the
initial value of b is zero!

int x;
scanf("%d", x);

int x;
scanf("%d", &x);

EXTREMELY COMMON MISTAKE

Common Mistakes (2/2)
CS1010 (AY2016/7 Semester 1) Unit3 - 81 © NUS

 Forgetting to compile with –lm option when the program
uses math functions.

 Forgetting to recompile after modifying the source code.

Sometimes when your program crashes, a “core dump”
may happen. Remove the file “core” (UNIX command:
rm core) from your directory as it takes up a lot of
space.

FAQs
Overview of C Programming Unit4 - 82 Aaron Tan, NUS

Our program is a function (the ‘main’ function), and it is defined as
‘int main(void)’ – it has no parameters and it returns an integer value.
Hence we add ‘return 0;’ at the end of the function to return 0. Return
to where? Return to the operation system in which the program is
run. In our case it is UNIX. UNIX takes the return value of 0 to mean
a successful run.

Why is there a ‘return 0;’ at the end of every program?

You will use the basic ones like %d for integers, %f for float and double,
and %c for characters for now, and simple formatting such as the
number of decimal places to be displayed.
We will focus more on the problem solving aspects in this module than
on complex output formatting.

There are so many ways to format outputs in printf(), do I
have to know them all?

Overview of C Programming Unit4 - 83 Aaron Tan, NUS

Knowing the basic C constructs, interactive input,
output, and arithmetic operations

Knowing some data types and the
use of variables to hold data

Be aware of some basic common mistakes

Using some math functions

Understanding good programming style

Overview of C Programming Unit4 - 84 Aaron Tan, NUS

2.1 if and if-else Statements
CS1010 (AY2016/7 Semester 1) Unit5 - 85 © NUS

 if statement
How are conditions specified
and how are they evaluated?

 if-else statement

if (condition) {
 /* Execute these statements if TRUE */
}

if (condition) {
 /* Execute these statements if TRUE */
}
else {
 /* Execute these statements if FALSE */
}

cond?
true

false

cond? true false Braces { } are optional
only if there is one
statement in the block.

2.2 Condition
CS1010 (AY2016/7 Semester 1) Unit5 - 86 © NUS

 A condition is an expression evaluated to true or false.
 It is composed of expressions combined with relational

operators.
 Examples: (a <= 10), (count > max), (value != -9)

Relational Operator Interpretation
< is less than

<= is less than or equal to
> is greater than

>= is greater than or equal to
== is equal to
!= is not equal to

2.8 if and if-else Statements: Examples (1/2)
CS1010 (AY2016/7 Semester 1) Unit5 - 87 © NUS

int a;
. . .
if (a % 2 == 0) {
 printf("%d is even\n", a);
}
else {
 printf("%d is odd\n", a);
}

int a, b, t;
. . .
if (a > b) {
 // Swap a with b
 t = a; a = b; b = t;
}
// After above, a is the smaller

if statement
without else part

if-else statement

A complete example

CS1010 (AY2016/7 Semester 1) Unit3 - 88

#include <stdio.h>

int main() {
 int a,b;
 printf("Please enter the first number: ");
 scanf("%d",&a);
 printf("Please enter the second number: ");
 scanf("%d",&b);

 if (a > b)
 {
 printf(" The first number is bigger.\n");
 }
 else
 {
 printf(" The second number is bigger.\n");
 }

 return 0;
}

	Admin
	http://www.comp.nus.edu.sg/~cs1010/
	Let’s start!
	Unit 3: Overview of C Programming
	Unit 3: Overview of C Programming
	Introduction
	Slide Number 7
	Quick Review: Edit, Compile, Execute
	The Simple C Program
	The Less Simple C Program
	Variables
	A Simple C Program (2/3)
	What Happens in the Computer Memory
	Variables
	The Less Simple C Program
	The Less Simple C Program
	What if
	Variables: Mistakes in Initialization
	Personality Type
	Data Types
	All Data Types in C
	Exercise #1: Size of Data Types
	Notes (1/2)
	Notes (2/2)
	My own suggestion
	A Simple C Program (1/3)
	The Less Simple C Program
	A Simple C Program (2/3)
	A Simple C Program (3/3)
	Program Structure
	Basic Structure of a Program
	Program Structure
	A Simple C Program (2/3)
	Program Structure: Preprocessor Directives (1/2)
	Preprocessor Directives
	Slide Number 36
	Preprocessor Directives
	Program Structure: Preprocessor Directives (2/2)
	Preprocessor Directives
	Output
	Our “second.c”
	Program Structure: Input/Output (1/3)
	How to …
	Program Structure: Input/Output (2/3)
	Input
	Input
	Input
	Program Structure: Input/Output (3/3)
	Input
	Exercise #2: Testing scanf() and printf()
	Exercise #3: Distance Conversion (1/2)
	Exercise #3: Distance Conversion (2/2)
	Computation
	Program Structure: Compute (1/9)
	Program Structure: Compute (2/9)
	Program Structure: Compute (3/9)
	Program Structure: Compute (4/9)
	Which lines are valid in C++
	Program Structure: Compute (5/9)
	Is this ok?
	Program Structure: Compute (6/9)
	Program Structure: Compute (7/9)
	Program Structure: Compute (8/9)
	Program Structure: Compute (9/9)
	If Not enough time
	Exercise #4: Temperature Conversion
	Exercise #5: Freezer (1/2)
	Exercise #5: Freezer (2/2)
	Math Functions (1/2)
	Math Functions (2/2)
	Math Functions: Example (1/2)
	Math Functions: Example (2/2)
	Notes (1/2)
	Notes (2/2)
	Type of Errors
	Programming Style (1/2)
	Programming Style (2/2)
	Type of Errors
	There are two types of people
	Common Mistakes (1/2)
	Common Mistakes (2/2)
	FAQs
	Slide Number 83
	Slide Number 84
	2.1 if and if-else Statements
	2.2 Condition
	2.8 if and if-else Statements: Examples (1/2)
	A complete example

