
UNIT 7

Pointers

http://www.comp.nus.edu.sg/~cs1010/

http://www.comp.nus.edu.sg/~cs1010
http://www.comp.nus.edu.sg/~cs1010/

Unit 7: Pointers
Objective:
 Learning about pointers and how to use them to

access other variables

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 2

Reference:
 Section 6.1 Pointers and the Indirection Operator

Unit 7: Pointers
1. Variable and Its Address
2. Pointer Variable
3. Declaring a Pointer
4. Assigning Value to a Pointer
5. Accessing Variable Through Pointer
6. Examples
7. Common Mistake
8. Why Do We Use Pointers?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 3

HOW DO YOU TELL
OTHERS WHERE YOUR
HOME IS?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 4

Real Life Address Example
• Back in 2002, School of Computing is in another corner of

NUS

CS1010 (AY2016/7 Semester 1) Unit7 - 5

CS1010 (AY2016/7 Semester 1) Unit7 - 6

Real Life Address Example
• The address of SOC at that time

• 3 Science Drive 2, 117543
• 6 Science Drive 2, 117546

• But now, no more SOC but
• Quantum Tech
• Graphene Research Centre
• NUS Dept of Math

CS1010 (AY2016/7 Semester 1) Unit7 - 7

Addresses

“Contents”

Real Life Address Example

Addresses

• In the past
• 3 Science Drive 2, 117543
• 6 Science Drive 2, 117546

• Now

• 3 Science Drive 2, 117543
• 6 Science Drive 2, 117546

Contents

• In the past
• SOC
• SOC

• Now

• Quantum Tech
• Graphene Research Centre

CS1010 (AY2016/7 Semester 1) Unit7 - 8

1. Variable and Its Address (1/2)
 A variable has a unique name

(identifier) in the function it is
declared in, it belongs to some data
type, and it contains a value of that
type

 A variable occupies some space in the
memory, and hence it has an address

 The programmer usually does not need
to know the address of the variable (she
simply refers to the variable by its
name), but the system keeps track of the
variable’s address

int a;
a = 123;

Data type Name

May only contain integer value

a

123

Where is
variable a
located in the
memory?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 9

1. Variable and Its Address (2/2)
 You may refer to the address of a variable by using the

address operator: & (ampersand)

 %p is used as the format specifier for addresses
 Addresses are printed out in hexadecimal (base 16)

format
 The address of a variable varies from run to run, as the

system allocates any free memory to the variable
 Test out Unit7_Address.c

int a = 123;
printf("a = %d\n", a);
printf("&a = %p\n", &a);

a = 123
&a = ffbff7dc

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 10

Computer
 Memory

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 11

The
content is
an integer

The
address
of the
variable a

Some others
maybe float,
double, etc.

Address Content

ffbff7d8

ffbff7d9

ffbff7da

ffbff7db

ffbff7dc

ffbff7dd

ffbff7de

ffbff7df

ffbff7e0

ffbff7e1

ffbff7e2

123

3.141592654

How
about?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 12

The content of the
address is an
address The address

of the variable
a_ptr

Address Content

ffbff7d8

ffbff7d9

ffbff7da

ffbff7db

ffbff7dc

ffbff7dd

ffbff7de

ffbff7df

ffbff7e0

ffbff7e1

ffbff7e2

3

3.141592654

ffbff7dc

2. Pointer Variable
 A variable that contains the address of another variable

is called a pointer variable, or simply, a pointer.
 Example: a pointer variable a_ptr is shown as a blue

box below. It contains the address of variable a.

 Variable a_ptr is said to be pointing to variable a.
 If the address of a is immaterial, we simply draw an arrow

from the blue box to the variable it points to.

a

123

a_ptr

ffbff7dc
Assuming that
variable a is located
at address ffbff7dc.

a

123

a_ptr

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 13

How
about?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 14

The address
of the variable
a_ptr

Address Content

ffbff7d8

ffbff7d9

ffbff7da

ffbff7db

ffbff7dc

ffbff7dd

ffbff7de

ffbff7df

ffbff7e0

ffbff7e1

ffbff7e2

123

3.141592654

ffbff7dc

3. Declaring a Pointer

 pointer_name is the name (identifier) of the pointer
 type is the data type of the variable this pointer may

point to

type *pointer_name;

int *a_ptr;

 Example: The following statement declares a pointer
variable a_ptr which may point to any int variable

 Good practice to name a pointer with suffix _ptr or _p

Syntax:

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 15

4. Assigning Value to a Pointer
 Since a pointer contains an address, only addresses

may be assigned to a pointer
 Example: Assigning address of a to a_ptr

int a = 123;
int *a_ptr; // declaring an int pointer

a_ptr = &a;

a

123

a_ptr

int a = 123;
int *a_ptr = &a; // initialising a_ptr

 We may initialise a pointer during its declaration:

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 16

5. Accessing Variable Through Pointer

 Once we make a_ptr points to a (as shown above), we
can now access a directly as usual, or indirectly
through a_ptr by using the indirection operator (also
called dereferencing operator): *

a

123

a_ptr

printf("a = %d\n", *a_ptr);

= printf("a = %d\n", a);

*a_ptr = 456; = a = 456;

Hence, *a_ptr is synonymous with a

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 17

int a = 123;
int a_ptr = &a;

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 18

Remark
a integer 123
&a the address of a
a_ptr pointer = the

address of a
Can change to
the address of
other variables

*a_ptr get the content in
the address, in
which is the
content of ‘a’ now

&a_ptr The address of
a_ptr

Not now

*a Treat a as a
pointer

You will not have
a good time with it

6. Example #1
int i = 10, j = 20;
int *p; // p is a pointer to some int variable

p = &i; // p now stores the address of variable i

printf("value of i is %d\n", *p);

i
10

j
20

p

value of i is 10

Now *p is equivalent to i Important!

// *p accesses the value of pointed/referred variable
*p = *p + 2; // increment *p (which is i) by 2
 // same effect as: i = i + 2;

12

p = &j; // p now stores the address of variable j

Now *p is equivalent to j Important!

*p = i; // value of *p (which is j now) becomes 12
 // same effect as: j = i;

12

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 19

6. Example #2 (1/2)

#include <stdio.h>

int main(void) {
 double a, *b;

 b = &a;
 *b = 12.34;
 printf("%f\n", a);

 return 0;
}

Unit7_Pointer.c

Can you draw the picture?
What is the output?

What is the output if the printf()
statement is changed to the following?

printf("%f\n", *b);

printf("%f\n", b);

12.340000

12.340000

Compile with
warning

printf("%f\n", *a);
Error

a

b

What is the proper way to print a pointer?
(Seldom need to do this.)

printf("%p\n", b);
ffbff6a0

Value in hexadecimal;
varies from run to run.

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 20

6. Example #2 (2/2)
 How do we interpret the declaration?

 double a, *b;

 The above is equivalent to
 double a; // this is straight-forward: a is a double variable
 double *b;

 We can read the second declaration as
 *b is a double variable, so this implies that ...
 b is a pointer to some double variable

 The following are equivalent:

double a;
double *b;
b = &a;

double a;
double *b = &a;

double a;
double b = &a;

But this is not the same as
above (and it is not legal):

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 21

Exercise #1: Tracing Pointers (1/2)
CS1010 (AY2017/8 Semester 1) Unit7 - 22 © SoC, NUS

 Trace the code below manually to obtain the outputs.
 Compare your outputs with your neighbours.

int a = 8, b = 15, c = 23;
int *p1, *p2, *p3;

p1 = &b;
p2 = &c;
p3 = p2;
printf("1: %d %d %d\n", *p1, *p2, *p3);

*p1 *= a;
while (*p2 > 0) {
 *p2 -= a;
 (*p1)++;
}
printf("2: %d %d %d\n", *p1, *p2, *p3);
printf("3: %d %d %d\n", a, b, c);

Unit7_TracePointers.c

Exercise #2: Choose the Correct Codes
CS1010 (AY2017/8 Semester 1) Unit7 - 23 © SoC, NUS

 Pick the correct codes to read a value into the float
variable var.

float var;
scanf("%f", var)

(A)

float var;
scanf("%f", &var)

(B)

float var;
float *p;
p = &var;
scanf("%f", p)

(C)

float var;
float *p;
p = &var;
scanf("%f", &p)

(D)

Exercise #3: Incrementing a Pointer
CS1010 (AY2017/8 Semester 1) Unit7 - 24 © SoC, NUS

 If p is a pointer variable, what does it mean by p = p + 1
(or p++)?

int a, *ap;
float b, *bp;
char c, *cp;
double d, *dp;

ap = &a; bp = &b; cp = &c; dp = &d;
printf("%p %p %p %p\n", ap, bp, cp, dp);

ap++; bp++; cp++; dp++;
printf("%p %p %p %p\n", ap, bp, cp, dp);

ap += 3;
printf("%p\n", ap);

Unit7_IncrementPointers.c
Unit 4 Exercise #1:
int takes up 4 bytes
float takes up 4 bytes
char takes up 1 byte
double takes up 8 bytes

7. Common Mistake

#include <stdio.h>

int main(void) {
 int *n;

 *n = 123;
 printf("%d\n", *n);

 return 0;
}

Unit7_Common_Mistake.c

What’s wrong with this?
Can you draw the picture?

 Where is the pointer n pointing to?
 Where is the value 123 assigned to?
 Result: Segmentation Fault (core dumped)

 Remove the file “core” from your directory. It takes up a lot of space!

n
?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 25

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 26

Valid if a is allocated

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 27

The address
of the variable
a_ptr

The address
of the variable
a

Address Content

ffbff7d8

ffbff7d9

ffbff7da

ffbff7db

ffbff7dc

ffbff7dd

ffbff7de

ffbff7df

ffbff7e0

ffbff7e1

123

ffbff7dc

What if…?

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 28

The address
of the variable
a_ptr

The address
of the variable
a

Address Content

ffbff7d8

ffbff7d9

ffbff7da

ffbff7db

ffbff7dc

ffbff7dd

ffbff7de

ffbff7df

ffbff7e0

ffbff7e1

123

aabbccdd

?

Computer Memory
• For storage of data
int a = 3;

Computer
Memory

This space is
allocated and
labeled as “a”. And
we store ‘3’ inside

a

Window
Operating
System

Your program

Other
app

Other
app

3

Computer Memory
• For storage of data
int a = 3;
int a_ptr = &a;

Computer
Memory

Window
Operating
System

Your program

Other
app

Other
app

3
ffbff7dc

a_ptr

Computer Memory
• For storage of data
int a = 3;
int a_ptr; //can be rubbish

Computer
Memory

Window
Operating
System

Your program

Other
app

Other
app

3
aabbccdd

a_ptr

Invalid Area (Address)
• For storage of data
int a = 3;
int a_ptr; //can be rubbish

Computer
Memory

Window
Operating
System

Your program

Other
app

Other
app

3
aabbccdd

a_ptr

Segmentation
Fault!!!!!!!

Invalid Area (Address)
• For storage of data
int a = 3;
int a_ptr; //can be rubbish

Computer
Memory

Window
Operating
System

Your program

Other
app

Other
app

3
aabbccdd

a_ptr

Modify other
programs (or

your own)

8. Why Do We Use Pointers?
 It might appear that having a pointer to point to a

variable is redundant since we can access the variable
directly

 The purpose of pointers is apparent later when we pass
the address of a variable into a function, in the following
scenarios:
 To pass the address of the first element of an array to a

function so that the function can access all elements in the
array (Unit 8 Arrays, and Unit 9 Multidimensional Arrays)

 To pass the addresses of two or more variables to a function so
that the function can pass back to its caller new values for the
variables (Unit 14 Functions with Pointer Parameters)

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 34

Summary
 In this unit, you have learned about

 Declaring a pointer variable
 Using a pointer variable to point to a variable
 Hence, assessing a variable through the pointer

variable that points to it

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 35

End of File

© SoC, NUS CS1010 (AY2017/8 Semester 1) Unit7 - 36

	http://www.comp.nus.edu.sg/~cs1010/
	Unit 7: Pointers
	Unit 7: Pointers
	How do you tell others where your home is?
	Real Life Address Example
	Slide Number 6
	Real Life Address Example
	Real Life Address Example
	1. Variable and Its Address (1/2)
	1. Variable and Its Address (2/2)
	Computer� Memory
	How �about?
	2. Pointer Variable
	How �about?
	3. Declaring a Pointer
	4. Assigning Value to a Pointer
	5. Accessing Variable Through Pointer
	Slide Number 18
	6. Example #1
	6. Example #2 (1/2)
	6. Example #2 (2/2)
	Exercise #1: Tracing Pointers (1/2)
	Exercise #2: Choose the Correct Codes
	Exercise #3: Incrementing a Pointer
	7. Common Mistake
	Slide Number 26
	Valid if a is allocated
	What if…?
	Computer Memory
	Computer Memory
	Computer Memory
	Invalid Area (Address)
	Invalid Area (Address)
	8. Why Do We Use Pointers?
	Summary
	End of File

