
CS1020 Data Structures and Algorithms I

Lecture Note #14

Sorting

Objectives

2

1
• To learn some classic sorting algorithms

2
• To analyse the running time of these

algorithms

3

• To learn concepts such as in-place sorts and
stable sorts

4
• Using Java methods to perform sorting

[CS1020 Lecture 14: Sorting]

References

3

Book

• Chapter 10: Algorithm Efficiency and
Sorting, pages 542 to 577.

CS1020 website  Resources
 Lectures

• http://www.comp.nus.edu.sg/
~cs1020/2_resources/lectures.html

[CS1020 Lecture 14: Sorting]

Programs used in this lecture

 SelectionSort.java

 BubbleSort.java, BubbleSortImproved.java

 InsertionSort.java

 MergeSort.java

 QuickSort.java

 Sort.java, Sort2.java

 Person.java, AgeComparator.java,

NameComparator.java, TestComparator.java

4[CS1020 Lecture 14: Sorting]

Why Study Sorting?

 When an input is sorted by some sort key, many

problems become easy (eg. searching, min,

max, kth smallest, etc.)

Q: What is a sort key?

 Sorting has a variety of interesting algorithmic

solutions, which embody many ideas:

 Internal sort vs external sort

 Iterative vs recursive

 Comparison vs non-comparison based

 Divide-and-conquer

 Best/worst/average case bounds

5[CS1020 Lecture 14: Sorting]

Sorting applications

 Uniqueness testing

 Deleting duplicates

 Frequency counting

 Set intersection/union/difference

 Efficient searching

 Dictionary

 Telephone/street directory

 Index of book

 Author index of conference proceedings

 etc.

6[CS1020 Lecture 14: Sorting]

Outline

 Comparison based and Iterative algorithms

1. Selection Sort

2. Bubble Sort

3. Insertion Sort

 Comparison based and Recursive algorithms

4. Merge Sort

5. Quick Sort

 Non-comparison based

6. Radix Sort

7. Comparison of Sort Algorithms
 In-place sort

 Stable sort

8. Use of Java Sort Methods

7

Note: We consider only sorting in

ascending order of data.

[CS1020 Lecture 14: Sorting]

1 Selection Sort

1 Idea of Selection Sort

 Given an array of n items

1. Find the largest item.

2. Swap it with the item at the end of the array.

3. Go to step 1 by excluding the largest item

from the array.

9[CS1020 Lecture 14: Sorting]

1 Selection Sort of 5 integers

10

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

37 is the largest, swap it with

the last element, i.e. 13.

Q: How to find the largest?

Sorted!

[CS1020 Lecture 14: Sorting]

1 Code of Selection Sort

11

public static void selectionSort(int[] a) {
for (int i = a.length-1; i >= 1; i--) {
int index = i; // i is the last item position and

// index is the largest element position
// loop to get the largest element

for (int j = 0; j < i; j++) {
if (a[j] > a[index])
index = j; // j is the current largest item

}
// Swap the largest item a[index] with the last item a[i]

int temp = a[index];
a[index] = a[i];
a[i] = temp;

}
}

SelectionSort.java

[CS1020 Lecture 14: Sorting]

1 Analysis of Selection Sort

12

public static void selectionSort(int[] a)

{

for (int i=a.length-1; i>=1; i--) {

int index = i;

for (int j=0; j<i; j++) {

if (a[j] > a[index])

index = j;

}

SWAP(...)

}

}

Number of times the

statement is executed:

 n-1

 n-1

 (n-1)+(n-2)+…+1

= n×(n-1)/2

 n-1

Total = t1×(n-1)

+ t2×n×(n-1)/2

= O(n2)t1 and t2 = costs of statements in outer and inner blocks.

[CS1020 Lecture 14: Sorting]

2 Bubble Sort

2 Idea of Bubble Sort

 “Bubble” down the largest item to the end of the

array in each iteration by examining the i-th and

(i+1)-th items

 If their values are not in the correct order, i.e.

a[i] > a[i+1], swap them.

14

1 4 6 9

// no need to swap

i i+1

1 7 5 9

// not in order, need to swap

i i+1

[CS1020 Lecture 14: Sorting]

2 Example of Bubble Sort

 The first two passes of Bubble Sort for an array of 5

integers

15

At the end of pass 1, the largest

item 37 is at the last position.

At the end of pass 2, the second

largest item 29 is at the second

last position.

[CS1020 Lecture 14: Sorting]

2 Code of Bubble Sort

16

 Bubble Sort animation

public static void bubbleSort(int[] a) {
for (int i = 1; i < a.length; i++) {
for (int j = 0; j < a.length - i; j++) {
if (a[j] > a[j+1]) { // the larger item bubbles down (swap)
int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;

}
}

}
}

BubbleSort.java

[CS1020 Lecture 14: Sorting]

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BSort.html

2 Analysis of Bubble Sort

17

 1 iteration of the inner loop (test and swap) requires time

bounded by a constant c

 Doubly nested loops:

 Outer loop: exactly n-1 iterations

 Inner loop:

 When i=1, (n-1) iterations

 When i=2, (n-2) iterations

 …

 When i=(n-1), 1 iteration

 Total number of iterations = (n-1) + (n-2) + … + 1

= n×(n-1)/2

 Total time = c × n × (n-1)/2 = O(n2)

public static void bubbleSort(int[] a) {

for (int i = 1; i < a.length; i++) {

for (int j = 0; j < a.length - i; j++) {

if (a[j] > a[j+1]) { // (swap)

int temp = a[j];

a[j] = a[j+1];

a[j+1] = temp;

}

}

}

}

[CS1020 Lecture 14: Sorting]

2 Bubble Sort is inefficient

18

 Given a sorted input, Bubble Sort still

requires O(n2) to sort.

 It does not make an effort to check

whether the input has been sorted.

 Thus it can be improved by using a flag,

isSorted, as follows (next slide):

[CS1020 Lecture 14: Sorting]

2 Code of Bubble Sort (Improved

version)

19

public static void bubbleSort2(int[] a) {
for (int i = 1; i < a.length; i++) {
boolean isSorted = true; // isSorted = true if a[] is sorted

for (int j = 0; j < a.length-i; j++) {
if (a[j] > a[j+1]) { // the larger item bubbles up
int temp = a[j]; // and isSorted is set to false,

a[j] = a[j+1]; // i.e. the data was not sorted
a[j+1] = temp;
isSorted = false;

}
}
if (isSorted) return; // Why?

}
}

BubbleSortImproved.java

[CS1020 Lecture 14: Sorting]

2 Analysis of Bubble Sort (Improved

version)

20

 Worst case

 Input in descending order

 How many iterations in the outer loop are needed?

Answer: n-1 iterations

 Running time remains the same: O(n2)

 Best case

 Input is already in ascending order

 The algorithm returns after a single iteration in the

outer loop. (Why?)

 Running time: O(n)

[CS1020 Lecture 14: Sorting]

3 Insertion Sort

3 Idea of Insertion Sort

 Arranging a hand of poker cards

 Start with one card in your hand

 Pick the next card and insert it into its proper sorted

order

 Repeat previous step for all the rest of the cards

22[CS1020 Lecture 14: Sorting]

3 Example of Insertion Sort

23

 n = 4 S1 S2

 Given a seq: 40 13 20 8

 i=1 13 40 20 8

 i=2 13 20 40 8

 i=3 8 13 20 40

 n = no of items to be sorted

 S1 = sub-array sorted so far

 S2 = elements yet to be processed

 In each iteration, how to insert the next element into

S1 efficiently?

[CS1020 Lecture 14: Sorting]

3 Code of Insertion Sort

24

public static void insertionSort(int[] a) {
for (int i=1;i<a.length;i++) { //Q: Why i starts from 1?

// a[i] is the next data to insert

int next = a[i];
// Scan backwards to find a place. Q: Why not scan forwards?

int j; // Q: Why is j declared here?

// Q: What if a[j] <= next?

for (j=i-1; j>=0 && a[j]>next; j--)
a[j+1] = a[j];

// Now insert the value next after index j at the end of loop

a[j+1] = next;
}

}
InsertionSort.java

Q: Can we replace these two “next” with a[i]?


[CS1020 Lecture 14: Sorting]

3 Analysis of Insertion Sort

25

 Outer loop executes exactly n-1 times

 Number of times inner loop executes depends on the

inputs:

 Best case: array already sorted, hence (a[j] > next) is always false
 No shifting of data is necessary; Inner loop not executed at all.

 Worst case: array reversely sorted, hence (a[j] > next) is always

true
 Need i shifts for i = 1 to n-1.

 Insertion always occurs at the front.

... insertionSort(int[] a) {
for (int i=1;i<a.length;i++) {
int next = a[i];
int j;
for (j=i-1; j>=0 && a[j]>next; j--)
a[j+1] = a[j];

a[j+1] = next;
}

}

 Therefore, the best case

running time is O(n).
(Why?)

 The worst case running

time is O(n2). (Why?)

[CS1020 Lecture 14: Sorting]

4 Merge Sort

4 Idea of Merge Sort (1/3)

 Suppose we only know how to merge two sorted

lists of elements into one combined list

 Given an unsorted list of n elements

 Since each element is a sorted list, we can

repeatedly…

 Merge each pair of lists, each list containing one

element, into a sorted list of 2 elements.

 Merge each pair of sorted lists of 2 elements into a

sorted list of 4 elements.

 …

 The final step merges 2 sorted lists of n/2 elements to

obtain a sorted list of n elements.

27[CS1020 Lecture 14: Sorting]

4 Idea of Merge Sort (2/3)

 Divide-and-conquer method solves problem by

three steps:

 Divide Step: divide the larger problem into smaller

problems.

 (Recursively) solve the smaller problems.

 Conquer Step: combine the results of the smaller

problems to produce the result of the larger problem.

28[CS1020 Lecture 14: Sorting]

4 Idea of Merge Sort (3/3)

 Merge Sort is a divide-and-conquer sorting

algorithm

 Divide Step: Divide the array into two (equal) halves.

 (Recursively) sort the two halves.

 Conquer Step: Merge the two sorted halves to form a

sorted array.

 Q: What are the base cases?

29[CS1020 Lecture 14: Sorting]

4 Example of Merge Sort

30

7 2 6 3 8 4 5

7 2 6 3 8 4 5

2 3 6 7 4 5 8

Divide into

two halves

Recursively

sort the halves

2 3 4 5 6 7 8Merge the halves

[CS1020 Lecture 14: Sorting]

4 Code of Merge Sort

31

... mergeSort(int[] a, int i, int j) {
// to sort data from a[i] to a[j], where i<j
if (i < j) { // Q: What if i >= j?
int mid = (i+j)/2; // divide
mergeSort(a, i, mid); // recursion
mergeSort(a, mid+1, j);
merge(a,i,mid,j); //conquer: merge a[i..mid] and

//a[mid+1..j] back into a[i..j]
}

}
MergeSort.java

[CS1020 Lecture 14: Sorting]

12 16 27 27 38 39

12 27 39

27

39

39 12

39 12 27

16 27 38

27

16 38

38 16

38 16

38 16 27

4 Merge Sort of a 6-element Array (1/2)

32

mergeSort(a,i,mid);

mergeSort(a,mid+1,j);

merge(a,i,mid,j);
38 16 27 39 12 27

12

12 39

[CS1020 Lecture 14: Sorting]

12 16 27 27 38 39

12 27 39

27

39

39 12

39 12 27

16 27 38

27

16 38

38 16

38 16

38 16 27

4 Merge Sort of a 6-element Array (2/2)

33

mergeSort(a,i,mid);

mergeSort(a,mid+1,j);

merge(a,i,mid,j);
38 16 27 39 12 27

12

12 39

Divide phase:
Recursive call to

mergeSort

Conquer phase:
Merge steps

The sorting is done

here

[CS1020 Lecture 14: Sorting]

4 How to Merge 2 Sorted Subarrays?

34

3 7 8

a[3..5]a[0..2]
Temp array

t[0..5]

3 7 8

3 7 8

3 7 8

3 7 8

3 7 8

2 4 5

2 4 5

2 4 5

2 4 5

2 4 5

2 4 5

2

2 3

2 3 4

2 3 4 5

2 3 4 5 7 8

[CS1020 Lecture 14: Sorting]

4 Merge Algorithm (1/2)

35

... merge(int[] a, int i, int mid, int j) {
// Merges the 2 sorted sub-arrays a[i..mid] and
// a[mid+1..j] into one sorted sub-array a[i..j]

int[] temp = new int[j-i+1]; // temp storage
int left = i, right = mid+1, it = 0;
// it = next index to store merged item in temp[]
// Q: What are left and right?

while (left<=mid && right<=j) { // output the smaller
if (a[left] <= a[right])

temp[it++] = a[left++];
else

temp[it++] = a[right++];
}

[CS1020 Lecture 14: Sorting]

4 Merge Algorithm (2/2)

36

// Copy the remaining elements into temp. Q: Why?
while (left<=mid) temp[it++] = a[left++];
while (right<=j) temp[it++] = a[right++];
// Q: Will both the above while statements be executed?

// Copy the result in temp back into
// the original array a
for (int k = 0; k < temp.length; k++)
a[i+k] = temp[k];

}

[CS1020 Lecture 14: Sorting]

4 Analysis of Merge Sort (1/3)

37

 In Merge Sort, the bulk of work is done in the Merge step

merge(a, i, mid, j)

 Total number of items = k = j – i + 1

 Number of comparisons  k – 1 (Q: Why not = k – 1?)

 Number of moves from original array to temp array = k

 Number of moves from temp array to original array = k

... mergeSort(int[] a, int i, int j) {
if (i < j) {

int mid = (i+j)/2;
mergeSort(a, i, mid);
mergeSort(a, mid+1, j);
merge(a,i,mid,j);

}
}

 In total, number of

operations  3k – 1 = O(k)

 How many times is

merge() called?

[CS1020 Lecture 14: Sorting]

4 Analysis of Merge Sort (2/3)

38

n
Level 0:

Mergesort n items

Level 1:

2 calls to Mergesort n/2 items

Level 2:

4 calls to Mergesort n/22 items

n/2 n/2

n/22n/22 n/22 n/22

…

Level (log n):

n calls to Mergesort 1 item

Level 1:

1 calls to Merge

Level 2:

2 calls to Merge

Level (log n):

2(log n) -1(= n/2)

calls to Merge1 1 1…………………… 1

Level 0:

0 call to Merge

Let k be the maximum level, ie. Mergesort 1 item.

n/(2k) = 1  n = 2k
 k = log n

[CS1020 Lecture 14: Sorting]

4 Analysis of Merge Sort (3/3)

39

 Level 0: 0 call to Merge

 Level 1: 1 call to Merge with n/2 items each,

O(1  2  n/2) = O(n) time

 Level 2: 2 calls to Merge with n/22 items each,

O(2  2  n/22) = O(n) time

 Level 3: 22 calls to Merge with n/23 items each,

O(22  2  n/23) = O(n) time

 …

 Level (log n): 2(log n)-1(= n/2) calls to Merge with n/2log n

(= 1) item each,

O(n/2  2 x 1) = O(n) time

 In total, running time = (log n)*O(n) = O(n log n)

[CS1020 Lecture 14: Sorting]

4 Drawbacks of Merge Sort

40

 Implementation of merge() is not

straightforward

 Requires additional temporary arrays and

to copy the merged sets stored in the

temporary arrays to the original array

 Hence, additional space complexity = O(n)

[CS1020 Lecture 14: Sorting]

5 Quick Sort

5 Idea of Quick Sort

 Quick Sort is a divide-and-conquer algorithm

 Divide Step: Choose a pivot item p and partition the

items of a[i..j] into 2 parts so that
 Items in the first part are < p, and

 Items in the second part are  p.

 Recursively sort the 2 parts

 Conquer Step: Do nothing! No merging is needed.

 What are the base cases?

42

Note: Merge Sort spends most of the time in conquer

step but very little time in divide step.

Q: How about Quick Sort?

Q: Is it similar to the Recursion lecture notes on finding

the Kth smallest element?
[CS1020 Lecture 14: Sorting]

5 Example of Quick Sort

43

27 38 12 39 27 16

Pivot

16 12 27 39 27 38

Pivot

12 16 27 27 38 39

Pivot

Partition a[] about

the pivot 27

Recursively sort

the two parts

Choose the 1st item as pivot

Note that after the partition,

the pivot is moved to its final position!

No merge phase is needed.

[CS1020 Lecture 14: Sorting]

5 Code of Quick Sort

44

... quickSort(int[] a, int i, int j) {
if (i < j) { // Q: What if i >= j?
int pivotIdx = partition(a, i, j);
quickSort(a, i, pivotIdx-1);
quickSort(a, pivotIdx+1, j);
// No conquer part! Why?

}
}

QuickSort.java

[CS1020 Lecture 14: Sorting]

5 Partition algorithm idea (1/4)

 To partition a[i..j], we choose a[i] as the pivot p.

 Why choose a[i]? Are there other choices?

 The remaining items (i.e. a[i+1..j]) are divided into

3 regions:

 S1 = a[i+1..m] where items < p

 S2 = a[m+1..k-1] where item  p

 Unknown (unprocessed) = a[k..j], where items are yet to

be assigned to S1 or S2.

45

? p< pp

i m k j

S1 S2 Unknown
[CS1020 Lecture 14: Sorting]

5 Partition algorithm idea (2/4)

 Initially, regions S1 and S2 are empty. All items

excluding p are in the unknown region.

 Then, for each item a[k] (for k=i+1 to j) in the unknown

region, compare a[k] with p:

 If a[k]  p, put a[k] into S2.

 Otherwise, put a[k] into S1.

 Q: How about if we change  to > in the condition

part?

46[CS1020 Lecture 14: Sorting]

5 Partition algorithm idea (3/4)

 Case 1:

47

If a[k] =y  p,

Increment k

? p<pp

i m k j

x y

S1 S2

? p<pp
i m k j

x y

S1 S2

[CS1020 Lecture 14: Sorting]

5 Partition algorithm idea (4/4)

 Case 2:

48

If a[k]=y < p

? p<pp
i m k j

x yIncrement m

? p<pp
i m k j

y x
Swap x and y

? p<pp

i m k j

y xIncrement k

? p<pp

i m k j

x y

S1 S2

[CS1020 Lecture 14: Sorting]

5 Code of Partition Algorithm

49

... partition(int[] a, int i, int j) {
// partition data items in a[i..j]
int p = a[i]; // p is the pivot, the ith item
int m = i; // Initially S1 and S2 are empty
for (int k=i+1; k<=j; k++) { //process unknown region
if (a[k] < p) { // case 2: put a[k] to S1

m++;
swap(a,k,m);

} else { // case 1: put a[k] to S2. Do nothing!
} // else part should be removed since it is empty

}
swap(a,i,m); // put the pivot at the right place
return m; // m is the pivot’s final position

}

 As there is only one ‘for’ loop and the size of the array is

n = j – i + 1, so the complexity for partition() is O(n)

[CS1020 Lecture 14: Sorting]

5 Partition Algorithm: Example

50

Same value, no need to swap them.

[CS1020 Lecture 14: Sorting]

5 Analysis of Quick Sort: Worst Case (1/2)

51

When a[0..n-1] is in increasing order:

10 13 14 29 37

p S2

S1 is empty

What is the index returned by partition()?

swap(a,i,m) will swap the pivot with itself!

The left partition (S1) is empty and

The right partition (S2) is the rest excluding the pivot.

What if the array is in decreasing order?

[CS1020 Lecture 14: Sorting]

5 Analysis of Quick Sort: Worst Case (2/2)

52

Total no. of

levels = n

n

1 n-1

1 n-2

1 1

…
… As each partition takes

linear time, the

algorithm in its worst

case has n levels and

hence it takes time

n+(n-1)+...+1 = O(n2)contains the pivot only!

[CS1020 Lecture 14: Sorting]

5 Analysis of Quick Sort: Best/Average case

 Best case occurs when partition always splits the

array into 2 equal halves

 Depth of recursion is log n.

 Each level takes n or fewer comparisons, so the time

complexity is O(n log n)

 In practice, worst case is rare, and on the average,

we get some good splits and some bad ones

 Average time is O(n log n)

53[CS1020 Lecture 14: Sorting]

6 Radix Sort

6 Idea of Radix Sort

 Treats each data to be sorted as a character

string.

 It is not using comparison, i.e., no comparison

among the data is needed.

 Hence it is a non-comparison based sort (the

preceding sorting algorithms are called comparison based

sorts)

 In each iteration, organize the data into groups

according to the next character in each data.

55[CS1020 Lecture 14: Sorting]

6 Radix Sort of Eight Integers

56[CS1020 Lecture 14: Sorting]

6 Pseudocode and Analysis of Radix Sort

57

radixSort(int[] array, int n, int d) {
// Sorts n d-digit numeric strings in the array.

for (j = d down to 1) { // for digits in last position to 1st position

initialize 10 groups (queues) to empty // Q: why 10 groups?

for (i=0 through n-1) {

k = jth digit of array[i]

place array[i] at the end of group k

}

Replace array with all items in group 0, followed by all items

in group 1, and so on.

}

} Complexity is O(d×n) where d is the

maximum number of digits of the n numeric

strings in the array. Since d is fixed or

bounded, so the complexity is O(n).

[CS1020 Lecture 14: Sorting]

7 Comparison of Sorting

Algorithms

7 In-place Sort

 A sorting algorithm is said to be an in-place sort if

it requires only a constant amount, i.e. O(1), of

extra space during the sorting process.

 Merge Sort is not in-place. (Why?)

 How about Quick Sort and Radix Sort?

59[CS1020 Lecture 14: Sorting]

7 Stable Sort

 A sorting algorithm is stable if the relative order of

elements with the same key value is preserved by

the algorithm.

 Example 1 – An application of stable sort:

 Assume that names have been sorted in alphabetical

order.

 Now, if this list is sorted again by tutorial group number,

a stable sort algorithm would ensure that all students in

the same tutorial groups still appear in alphabetical order

of their names.

 Quick Sort and Selection Sort are not stable. (Why?)

60[CS1020 Lecture 14: Sorting]

7 Non-Stable Sort

 Example 2 – Quick Sort and Selection Sort are not stable:

61

Quick sort:
1285 5 150 4746 602 5 8356 // pivot in bold

1285 (5 150 602 5) (4746 8356)

5 5 150 602 1285 4746 8356 //pivot swapped with the last one in S1

// the 2 5’s are in different order of the initial list

Selection sort: select the largest element and swap with the last one

1285 5 4746 602 5 (8356)

1285 5 5 602 (4746 8356)

602 5 5 (1285 4746 8356)

5 5 (602 1285 4746 8356)
// the 2 5’s are in different order of the initial list

[CS1020 Lecture 14: Sorting]

7 Summary of Sorting Algorithms

62

Worst Case Best Case In-place? Stable?

Selection Sort O(n2) O(n2) Yes No

Insertion Sort O(n2) O(n) Yes Yes

Bubble Sort O(n2) O(n2) Yes Yes

Bubble Sort 2
(improved with flag)

O(n2) O(n) Yes Yes

Merge Sort O(n log n) O(n log n) No Yes

Radix Sort (non-

comparison based)

O(n) (see notes 1) O(n) No Yes

Quick Sort O(n2) O(n log n) Yes No

Notes: 1. O(n) for Radix Sort is due to non-comparison based sorting.

2. O(n log n) is the best possible for comparison based sorting.

[CS1020 Lecture 14: Sorting]

8 Use of Java Sort Methods

8 Java Sort Methods (in Arrays class)

64

static void sort(byte[] a)

static void sort(byte[] a, int fromIndex, int toIndex)

static void sort(char[] a)

static void sort(char[] a, int fromIndex, int toIndex)

static void sort(double[] a)

static void sort(double[] a, int fromIndex, int toIndex)

static void sort(float[] a)

static void sort(float[] a, int fromIndex, int toIndex)

static void sort(int[] a)

static void sort(int[] a, int fromIndex, int toIndex)

static void sort(long[] a)

static void sort(long[] a, int fromIndex, int toIndex)

static void sort(Object[] a)

static void sort(Object[] a, int fromIndex, int toIndex)

static void sort(short[] a)

static void sort(short[] a, int fromIndex, int toIndex)

static <T> void sort(T[] a, Comparator<? super T> c)

static <T> void sort(T[] a, int fromIndex, int toIndex,

Comparator<? super T> c)

[CS1020 Lecture 14: Sorting]

8 To use sort() in Arrays

 The entities to be sorted must be stored in an

array first.

 If they are stored in a list, then we have to use

Collections.sort()

 If the data to be sorted are not primitive, then

Comparator must be defined and used

65

Note: Collections is a Java public class and Comparator

is a public interface. Comparators can be passed to a

sort method (such as Collections.sort()) to allow precise

control over the sort order.

[CS1020 Lecture 14: Sorting]

8 Simple program using Collections.sort()

66

 Run the program:

java Sort We walk the line

 The following output is produced:

Note: Arrays is a Java public class and asList() is a method of Arrays

which returns a fixed-size list backed by the specified array.

import java.util.*;

public class Sort {

public static void main(String args[]) {

List<String> list = Arrays.asList(args);

Collections.sort(list);

System.out.println(list);

}

}
Sort.java


[CS1020 Lecture 14: Sorting]

8 Another solution using Arrays.sort()

67

 Run the program:

java Sort2 We walk the line

 The following output is produced:

import java.util.*;

public class Sort2 {

public static void main(String args[]) {

Arrays.sort(args);

System.out.println(Arrays.toString(args));

}

}

Sort2.java


[CS1020 Lecture 14: Sorting]

8 Example: class Person

68

class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}
public String getName() { return name; }
public int getAge() { return age; }
public String toString() {
return name + " - " + age;

}
}

Person.java

[CS1020 Lecture 14: Sorting]

8 Comparator: AgeComparator

69

import java.util.Comparator;
class AgeComparator implements Comparator<Person> {
public int compare(Person p1, Person p2) {

// Returns the difference:
// if positive, age of p1 is greater than p2
// if zero, the ages are equal
// if negative, age of p1 is less than p2

return p1.getAge() - p2.getAge();
}

public boolean equals(Object obj) {
// Simply checks to see if we have the same object

return this == obj;
}

} // end AgeComparator
AgeComparator.java

Note: compare() and equals() are two methods of the interface Comparator.

Need to implement them.

[CS1020 Lecture 14: Sorting]

8 Comparator: NameComparator

70

import java.util.Comparator;
class NameComparator implements Comparator<Person> {

public int compare(Person p1, Person p2) {
// Compares its two arguments for order by name

return p1.getName().compareTo(p2.getName());
}

public boolean equals(Object obj) {
// Simply checks to see if we have the same object

return this == obj;
}

} // end NameComparator

NameComparator.java

[CS1020 Lecture 14: Sorting]

8 TestComparator (1/3)

71

import java.util.*;

public class TestComparator {

public static void main(String args[]) {
NameComparator nameComp = new NameComparator();
AgeComparator ageComp = new AgeComparator();
Person[] p = new Person[5];

p[0] = new Person("Michael", 15);
p[1] = new Person("Mimi", 9);
p[2] = new Person("Sarah", 12);
p[3] = new Person("Andrew", 15);
p[4] = new Person("Mark", 12);
List<Person> list = Arrays.asList(p);

TestComparator.java

[CS1020 Lecture 14: Sorting]

8 TestComparator (2/3)

72

System.out.println("Sorting by age:");
Collections.sort(list, ageComp);
System.out.println(list + "\n");

List<Person> list2 = Arrays.asList(p);
System.out.println("Sorting by name:");
Collections.sort(list2, nameComp);
System.out.println(list2 + "\n");

System.out.println("Now sort by age, then sort by name:");
Collections.sort(list2, ageComp); // list2 is already

sorted by name
System.out.println(list2);

} // end main

} // end TestComparator

TestComparator.java

[CS1020 Lecture 14: Sorting]

8 TestComparator (3/3)

73

java TestComparator

Sorting by age:

[Mimi – 9, Sarah – 12, Mark – 12, Michael – 15, Andrew – 15]

Sorting by name:

Now sort by age, then sort by name:


[CS1020 Lecture 14: Sorting]

8 Another solution using Arrays.sort()

74

We can replace the statements

List<Person> list = Arrays.asList(p);
System.out.println("Sorting by age:");
Collections.sort(list, ageComp);
System.out.println(list + "\n");

with

System.out.println("Sorting by age using Arrays.sort():");
Arrays.sort(p, ageComp);
System.out.println(Arrays.toString(p) + "\n");

[CS1020 Lecture 14: Sorting]

Summary

 We have introduced and analysed some classic sorting

algorithms.

 Merge Sort and Quick Sort are in general faster than

Selection Sort, Bubble Sort and Insertion Sort.

 The sorting algorithms discussed here are comparison

based sorts, except for Radix Sort which is non-

comparison based.

 O(n log n) is the best possible worst-case running time for

comparison based sorting algorithms.

 There exist Java methods to perform sorting.

75[CS1020 Lecture 14: Sorting]

Links on Sorting Algorithms

 http://visualgo.net  http://visualgo.net/sorting.html

 http://www.cs.ubc.ca/spider/harrison/Java/sorting-

demo.html

 http://max.cs.kzoo.edu/~abrady/java/sorting/

 http://www.sorting-algorithms.com/

 http://en.wikipedia.org/wiki/Sort_algorithm

 http://search.msn.com/results.aspx?q=sort+algorithm&FORM

=SMCRT

 and others (please google)

76[CS1020 Lecture 14: Sorting]

http://visualgo.net/
http://visualgo.net/sorting.html
http://www.cs.ubc.ca/spider/harrison/Java/sorting-demo.html
http://max.cs.kzoo.edu/~abrady/java/sorting/
http://www.sorting-algorithms.com/
http://en.wikipedia.org/wiki/Sort_algorithm
http://search.msn.com/results.aspx?q=sort+algorithm&FORM=SMCRT

End of file

