
Page 1 of 12

CS1020: DATA STRUCTURES AND ALGORITHMS I
Tutorial 7 – Stacks and Queues

(Week 9, starting 14 March 2016)

1. Java API Stack and Queue
In the following program, we create instances of the API Stack/LinkedList classes and use some of
their behavior. Draw diagrams to represent the contents of s1, s2 and q at each step.

 public static void main(String[] args) {
 Queue<Integer> q = new LinkedList<Integer>();
 Stack<Integer> s1 = new Stack<Integer>();
 Stack<Integer> s2 = new Stack<Integer>();

 // Draw contents after these 3 statements
 s1.push(new Integer(3));
 s1.push(new Integer(2));
 s1.push(new Integer(1));

 // Draw contents after each iteration
 while (!s1.empty()) {
 s2.push(s1.pop());
 if (!s1.isEmpty()) s2.push(s1.peek());
 q.offer(s2.peek());
 }

 // Draw contents after this statement
 s1.push(q.remove());

 // Print out the contents of the stacks and queue
 String output = "";
 while (s1.size() > 0)
 output = s1.pop() + " " + output;
 System.out.println("S1 : " + output + "(top)");

 output = "";
 while (s2.size() > 0)
 output = s2.pop() + " " + output;
 System.out.println("S2 : " + output + "(top)");

 output = "";
 while (q.size() > 0)
 output = output + " " + q.remove();
 System.out.println("Q : (head)" + output);
 }

Find out for yourself, why does Queue have:

poll() and remove()

peek(), peekFirst() and peekLast()

https://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

Page 2 of 12

Answer

Page 3 of 12

2. Waiting Queue
In our day-to-day life, it is common to wait in a queue/line, be it buying a hamburger at McDonald’s,
or waiting to pay for accommodation at a residence. People join the queue sequentially, and are
served in a first-come-first-served manner. However, using pure queue operations is not enough, as
people in the queue might grow impatient and leave.

In this exercise, you want to implement a WaitingQueue which contains the names of the people in
the queue. In addition to the standard queue behavior, it allows people to leave at any time. An
array is used as the underlying data structure. You may assume that the names of people in the
queue are unique.

(a) How does this data structure differ from the Queue learnt in lectures?

(b) If the WaitingQueue class is fully and correctly implemented, what is the output of the main()
method shown below?

 public static void main(String[] args) {
 WaitingQueue q = new WaitingQueue();

 q.addAPerson("Person 1");
 q.addAPerson("Person 2");
 q.addAPerson("Person 3");
 q.addAPerson("Person 4");
 q.addAPerson("Person 5");
 q.addAPerson("Person 6");
 q.addAPerson("Person 7");
 q.addAPerson("Person 8");

 System.out.println(q.serveNextPerson());
 System.out.println(q.serveNextPerson());

 boolean b1 = q.leave("Person 2");
 boolean b2 = q.leave("Person 3");
 boolean b3 = q.leave("Person 4");

 System.out.println(b1);
 System.out.println(b2);
 System.out.println(b3);

 while (!q.isEmpty())
 System.out.println(q.serveNextPerson());
 }

Page 4 of 12

(c) Complete the implementation of WaitingQueue using the code snippet below. There will be at
most 9 people in the queue. Nobody will be able to join the queue when it is full.

 public class WaitingQueue {
 private String[] waitingHere;
 private int front; // "Leave a gap" when array is full
 private int back; // back is the index AFTER last element

 private static final int ARR_LENGTH = 10;

 public WaitingQueue() {
 waitingHere = new String[ARR_LENGTH];
 }

 public boolean isEmpty() {
 return false; // TODO: Implement isEmpty method
 }

 // Returns true if Person is successfully added
 public boolean addAPerson(String newPerson) {
 return false; // TODO: Offer to back of queue
 }

 public String serveNextPerson() {
 return null; // TODO: Remove from front of queue
 }

 // Returns true if someone is removed from the queue
 public boolean leave(String personName) {
 return false; // TODO: Implement leaving
 }
 }

(d) Think of at least two other ways to implement the leave() method, and comment on whether
these ways are efficient. You do NOT need to implement them.

Page 5 of 12

Answer
(a)
WaitingQueue is not a pure Queue data structure, because leave() treats the people in the queue as
a Collection. Of course, addAPerson() and serveNextPerson() preserve the FIFO property that we
would expect a queue to have.

(b)
Person 1
Person 2
false
true
true
Person 5
Person 6
Person 7
Person 8

(c)
 public class WaitingQueue {
 private String[] waitingHere;
 private int front; // "Leave a gap" when array is full
 private int back; // back is the index AFTER last element

 private static final int ARR_LENGTH = 10;

 public WaitingQueue() {
 waitingHere = new String[ARR_LENGTH];
 }

 public boolean isEmpty() {
 return front == back;
 }

 // Returns true if Person is successfully added
 public boolean addAPerson(String newPerson) {
 if ((back + 1) % ARR_LENGTH == front) // array full
 return false;
 waitingHere[back] = newPerson;
 back = (back + 1) % ARR_LENGTH; // circular array behavior
 return true;
 }

 public String serveNextPerson() {
 if (isEmpty()) // empty queue
 return null;
 String firstPerson = waitingHere[front];
 waitingHere[front] = null; // optional
 front = (front + 1) % ARR_LENGTH;
 return firstPerson;
 }

 // Returns true if someone is removed from the queue

Page 6 of 12

 public boolean leave(String personName) {

 // find first matching person
 boolean found = false;
 int position = front;
 while (position != back) { // pos may NOT be < back !!!
 if (waitingHere[position].equals(personName)) {
 waitingHere[position] = null; // optional
 found = true;
 break;
 }
 position = (position + 1) % ARR_LENGTH;
 }

 if (!found)
 return false;

 // left shift elements
 position = (position + 1) % ARR_LENGTH;
 while (position != back) {
 if (position != 0)
 waitingHere[position-1] = waitingHere[position];
 else
 waitingHere[ARR_LENGTH - 1] = waitingHere[0];
 position = (position + 1) % ARR_LENGTH;
 }

 // decrement back
 back = (back + ARR_LENGTH - 1) % ARR_LENGTH;
 return true;
 }
}

(d)

Assume there are N people in the queue.

Current implementation - Left-shift remaining elements

All N elements in the queue are always accessed. This causes leave() to be inefficient, while allowing
the two queue operations to remain efficient. Only one element is accessed in addAPerson() and
serveNextPerson().

Lazy deletion

Each element in the queue has a boolean flag indicating whether a person has left the queue, or not.
If we create a Person class, let the flag be one of its attributes, then we can efficiently indicate that a
person has left. If we already have a reference to the matching Person object, we only need to
access that one element.

However, serveNextPerson() will suffer, as we now have to access more than one element in order
to clear the deleted objects at the front of the queue.

Page 7 of 12

Maintain separate collection of people who want to leave

We can store the names of the people who want to leave the queue in a separate data structure.
When a person is served, the collection is searched to find a matching person. We will learn how to
implement a collection that allows elements to be added and searched efficiently later in the
semester.

The efficiency of leave() is improved as compared to the current implementation, but the method
requires more space. serveNextPerson() will be less efficient too, as we may have to remove more
than one element before we find someone who has not already left the queue. Meanwhile, the
person already left still takes up one position in this queue before it served, which reduces the valid
length of the queue.

3. Expression Evaluation
In the Lisp programming language, each of the four basic arithmetic operators appears before an
arbitrary number of operands, which are separated by spaces. The resulting expressions are enclosed
in parentheses. There is only one operator in a pair of parentheses. The operators behave as follows:

• (+ a b c) returns the sum of all the operands, and (+) returns 0.

• (- a b c) returns a – b – c - … and (- a) returns 0 – a.
The minus operator must have at least one operand.

• (* a b c) returns the product of all the operands, and (*) returns 1.

• (/ a b c) returns a/b/c/… and (/ a) returns 1/a.
The divide operator must have at least one operand.

You can form larger arithmetic expressions by combining these basic expressions using a fully
parenthesized prefix notation. For example, the following is a valid Lisp expression:

 (+ (- 6) (* 2 3 4))

The expression is evaluated successively as follows:

 (+ -6 (* 2 3 4))
 (+ -6 24)
 18.0

Design and implement a program that uses up to 2 stacks to evaluate a legal Lisp expression
composed of the four basic operators, integer operands, and parentheses. The expression is well-
formed (i.e. no syntax error), there will always be a space between 2 tokens, and we will not divide
by zero.

Answer
One algorithm uses two stacks. The first is used to store the tokens read from the expression one by
one until the operator “)”. The second stack is used to perform a simple operation on the operands in
the innermost expression already in the first stack. The tokens are pushed into the second stack in
reverse order. Therefore, tokens from the second stack are popped in the order of input. The
calculated result is then pushed back into the first stack.

An example is given in the next few pages:

Page 8 of 12

Answer

Expression (+ (- 6) (* 2 3 4))

(

+

(

-

6

1. The main
stack pushes
the tokens
one by one
until it reads
“)”.

The main stack The temporary stack for
simple calculation

(

+

6

-

2. The main
stack pops out
the tokens and
push them one
by one to the
temporary
stack.

The main stack The temporary stack for
simple calculation

(

+

3. The
temporary
stack pushes
back the result
after
calculation.

The main stack The temporary stack for
simple calculation

-6

Page 9 of 12

(

+

4. The main
stack continues
to push in the
tokens from
the expression
until it reads
“)”.

The main stack The temporary stack for
simple calculation

-6

(

*

2

3

4

Expression (+ -6 (*2 3 4))

(

+

5. The main
stack pops out
the tokens and
push them one
by one to the
temporary
stack.

The main stack The temporary stack for
simple calculation

-6

4

3

2

*

(

+

6. The
temporary
stack pushes
back the result
after
calculation.

The main stack The temporary stack for
simple calculation

-6

24

Page 10 of 12

(

+

7. The main
stack continues
to push in the
tokens from
the expression
until it reads
“)”.

The main stack The temporary stack for
simple calculation

-6

24

8. The main
stack pops out
the tokens and
push them one
by one to the
temporary
stack.

The main stack

24

-6

+

Expression (+ -6 24)

The temporary stack for
simple calculation

9. The temporary
stack pushes back
the result after
calculation. When
it is at the end of
expression, the
final result is stored
in the main stack.

The main stack The temporary stack for
simple calculation

18

Page 11 of 12

// Evaluate entire well-formed Lisp expression
public double evaluateLispExpr(String input) {
 Stack<String> tokens = new Stack<String>(); // outer stack
 Scanner sc = new Scanner(input);

 while (sc.hasNext()){
 String currentToken = sc.next();
 if (currentToken.equals(")")){
 Stack<String> expr = new Stack<String>(); // inner
 while (!tokens.peek().equals("("))
 expr.push(tokens.pop());
 tokens.pop(); // remove "("
 tokens.push("" + performOperation(expr));
 } else {
 tokens.push(currentToken);
 }
 }
 return Double.parseDouble(tokens.peek());
}

// Evaluate simple expression of form: operator operand1 operand2...
private double performOperation(Stack<String> s){
 double result = 0;
 char operator = s.pop().charAt(0); // pop() here returns String
 switch (operator){
 case '+':
 result = 0;
 while (!s.empty())
 result = result + Double.parseDouble(s.pop());
 return result;
 case '-':
 if (s.size() == 1)
 return 0 - Double.parseDouble(s.pop());
 result = Double.parseDouble(s.pop());
 while (!s.empty())
 result = result - Double.parseDouble(s.pop());
 return result;
 case '*':
 result = 1;
 while(!s.empty())
 result = result * Double.parseDouble(s.pop());
 return result;
 case '/':
 if (s.size() == 1)
 return 1 / Double.parseDouble(s.pop());
 result = Double.parseDouble(s.pop());
 while (!s.empty())
 result = result / Double.parseDouble(s.pop());
 return result;
 } // switch-case: don't forget to "break;" otherwise
 return result; // should not happen =X
}

Page 12 of 12

We have just used Stack<String> to simplify the algorithm within evaluateLispExpr(). It is a better
design for performOperation() to have parameters (char operator, Stack<Double> operands) instead,
since the first token in an operation has to be an operator, and the rest of the operands have to be
real numbers.

=þ

Trace through an algorithm
Why does this algorithm work?
What data structure is needed?

How does this data structure help?

	1. Java API Stack and Queue
	Answer

	2. Waiting Queue
	Answer
	(a)
	(b)
	(c)
	(d)

	3. Expression Evaluation
	Answer
	Answer

