Chapter 11 Projects

1. [parts a, b, and c after §10.9; part d after §11.13] Game of Spawn ***:

Write a program that implements the game of Spawn.
 It’s actually not a game in the traditional sense with players competing for a win. It was originally invented as a simulation of reproduction and growth. Here are the rules:

· The game is played on a rectangular grid of cells.

· A cell can be dead, indicated by a blank, or alive, indicated by an “X.”

· A dead cell comes to life when it has exactly three living neighbors.

· A living cell remains alive only when surrounded by two or three living neighbors, otherwise it dies of loneliness or overcrowding.

· Two cells are defined to be neighboring if they touch on a side or a corner.

Study the following spawn generations to make sure that you understand the rules:

generation 0 generation 1 generation 2
 generation 3 generation 4

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	X
	
	
	
	
	X
	
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	X
	
	

	
	X
	X
	X
	
	
	
	
	
	X
	X
	
	
	
	
	X
	
	X
	
	
	
	
	
	
	X
	X
	
	
	
	
	
	
	X
	

	
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	X
	X
	
	
	
	
	
	X
	X
	
	
	
	
	
	X
	X
	X
	

a) Create a class named Spawn that:

· Contains a grid array instance variable that stores the playing grid.

· Initializes the grid to the blank spaces and X’s shown in the generation 0 table above.

· Contains a nextGeneration method that transforms the grid using the spawn rules shown above. Hint: Use a temporary variable to store the next generation. When done creating the next generation, copy the temporary variable on top of the grid array.

· Contains a print method that prints the grid array.
· Contains a helper method(s) if appropriate.
Create a class named SpawnDriver that takes user input and produces the following display.

Sample session (this mimics the first three generations shown above):

--- S P A W N ---

Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> P
 X

 X

 XXX

Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> n
Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> p
 X X

 XX

 X

Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> n
Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> p
 X

 X X

 XX

Options: (n)ext generation, (p)rint, (q)uit

Enter n, p, or q ==> q
b) Add a “load grid” option. This option provides custom initialization. See the below sample session.

c) Add an “evolve” option. This option allows the user to specify the number of generations that are to be spawned. See the below sample session.

d) [after §11.12] Add a printSpecial method. It should be called instead of the print method when the user chooses the “print” option. The printSpecial method must use Unicode characters to print the living cells and the border. Instantiate a JFrame 220 pixels wide times 230 pixels high, and add an instance of JTextArea to it. For the JTextArea content, use a plain 16-point Courier New font. For the creatures in the game, use smiley faces (\u263A) separated horizontally by one space. For the border, use the appropriate box-drawing symbols from Figure 11.12. See the below sample session.
Sample session for parts b, c, and d:
--- S P A W N ---

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> L
Number of rows in spawn grid: 9
Number of columns in spawn grid: 9
Enter a rectangular spawn pattern with 9 rows and 9 columns.

Blank indicates empty, "X" indicates alive.

 XXX

 X

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> p
[image: image1.png]Game of Spawn

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> e
Number of generations to be spawned: 4

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> p
[image: image2.png]Game of Spawn

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> n
Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> p
[image: image3.png]Game of Spawn

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> e

Number of generations to be spawned: 100
Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> p
[image: image4.png]Game of Spawn

[R-Ne}

[R-Ne}

Options: (n)ext, (p)rint, (l)oad grid, (e)volve, (q)uit

Enter n, p, l, e, or q ==> q
2. [after §11.3] ASCII Table *:

Write a program that prints the 128-character ASCII table. It should print the table in eight tab-separated columns. The first column contains a "Dec" heading (for decimal number) with the numbers 0 through 31 below it. The second column contains the ASCII characters associated with the numbers 0 through 31. The next columns contain the subsequent numbers and associated ASCII characters. See the below sample output for details. Be aware that that output was produced by a program running in a console window in a Windows environment. If you run your program in a different environment, the first 32 characters and the last character will probably be different from what’s shown below.

Note that some characters display in a non-standard manner. For example, the number 7 corresponds to a bell sound. You can’t see a sound, but you can see the vacant spot for 7’s character in the below table. The number 8 corresponds to the backspace character. You can’t see a backspace, but you can see how the number 8’s row is shifted left in the below table. That’s due to the backspace character backspacing over one of the tab characters.

Sample output:
Dec Dec Dec Dec

--- --- --- ---

0 32 64 @ 96 `

1 ☺ 33 ! 65 A 97 a

2 ☻ 34 " 66 B 98 b

3 ♥ 35 # 67 C 99 c

4 ♦ 36 $ 68 D 100 d

5 ♣ 37 % 69 E 101 e

6 ♠ 38 & 70 F 102 f

7 39 ' 71 G 103 g

8 40 (72 H 104 h

9 41) 73 I 105 i

10

 42 * 74 J 106 j

11 ♂ 43 + 75 K 107 k

12 ♀ 44 , 76 L 108 l

 45 - 77 M 109 m

14 ♫ 46 . 78 N 110 n

15 ☼ 47 / 79 O 111 o

16 ► 48 0 80 P 112 p

17 ◄ 49 1 81 Q 113 q

18 ↕ 50 2 82 R 114 r

19 ‼ 51 3 83 S 115 s

20 ¶ 52 4 84 T 116 t

21 § 53 5 85 U 117 u

22 ▬ 54 6 86 V 118 v

23 ↨ 55 7 87 W 119 w

24 ↑ 56 8 88 X 120 x

25 ↓ 57 9 89 Y 121 y

26 → 58 : 90 Z 122 z

27 ← 59 ; 91 [123 {

28 ∟ 60 < 92 \ 124 |

29 ↔ 61 = 93] 125 }

30 ▲ 62 > 94 ^ 126 ~

31 ▼ 63 ? 95 _ 127 ⌂

3. [after §11.7] Circular Queue *:

In this project, you are given an inelegant program, and you are tasked with improving it. More specifically, replace conditional operators, embedded assignments, and embedded increment operators with simpler, more understandable code.

The given program, shown below, implements a circular-array queue. A queue is a British term for a line of people waiting to be served. A queue can also refer to any line of items where the item at the front of the queue is served next, and new items are added at the rear of the queue. Information-transmission systems, like the Internet, have lots of queues, where messages in transit are temporarily stalled at some intermediate system node, waiting to get into the next available time slot on the next leg of their journey. A queue’s length is the total number of people or items currently waiting. When the next item is served, that shortens the queue by one. When another person arrives, that lengthens the queue by one. A queue’s capacity is the maximum number of items that can get into the line. If a queue is full, its length equals its capacity, and all new arrivals are rejected.

The simplest way to implement a queue is with an array with two pointers, a front pointer, which contains the index of the element just before the front of the queue, and a rear pointer, which contains the index of the element at the rear of the queue. When the server calls “next,” the front pointer increments, and the front person gets service. Each new arrival increments the rear pointer. As time passes, both pointers move to higher values. Does this mean that the array’s length must keep increasing forever? No. Whenever either pointer increments to a value equal to the array’s length (thereby making it “out of bounds”), you reassign the pointer to index 0. This effectively connects the end of the array to its beginning and makes it circular.

The following Queue program is functionally correct. To see what it does, enter it on a computer and run it. Then rewrite the isFull, remove, and showQueue methods by replacing conditional operators, embedded assignments, and embedded increment operators with simpler, more understandable code.

/***

* QueueDriver.java

* Dean & Dean

*

* This class exercises the Queue class.

***/

public class QueueDriver

{

 public static void main(String[] args)

 {

 Queue queue = new Queue(4);

 queue.add("Armando");

 queue.add("Barack");

 queue.add("Cyrus");

 System.out.println("length = " + queue.length());

 queue.showQueue();

 System.out.println("Removed " + queue.remove());

 queue.add("Dareh");

 queue.add("Esther");

 System.out.println("length = " + queue.length());

 queue.showQueue();

 } // end main

} // end QueueDriver class
/***

* Queue.java

* Dean & Dean

*

* This class implements a queue with a circular array.

***/

public class Queue

{

 private String[] queue;

 private int length = 0; // number of filled elements

 private int capacity; // size of array

 private int front = 0; // index before next item to remove

 private int rear = 0; // index of last item added

 //**

 public Queue(int capacity)

 {

 queue = new String[capacity];

 this.capacity = capacity;

 } // end constructor

 //**

 public boolean isEmpty()

 {

 return length == 0;

 } // end isEmpty

 //**

 public boolean isFull()

 {

 return length==capacity ? true : false;

 } // end isFull

 //**

 public int length()

 {

 return length;

 } // end length

 //**

 public boolean add(String name)

 {

 if (isFull())

 {

 return false;

 }

 else

 {

 queue[rear++] = name;

 rear %= capacity;

 length++;

 return true;

 }

 } // end add

 //**

 public String remove()

 {

 if (isEmpty())

 {

 return null;

 }

 else

 {

 length--;

 return queue[(front = ++front % capacity) == 0 ?
 capacity-1 : front-1];

 }

 } // end remove

 //**

 public void showQueue()

 {

 int cur = front;

 if (!isEmpty())

 {

 do

 {

 System.out.println(queue[cur]);

 } while ((cur = ++cur % capacity) != rear);

 }

 } // end showQueue

} // end Queue class

4. [after §11.7] Polynomial Interpolation **:

In this project you write a program that interpolates between data points. Interpolation is widely used in empirical sciences like agronomy, so for our data example, we have taken some actual data on the growth rate of oats,
 specifically, the dependence of the mass of dry matter produced on the rate of fertilization with phosphate (P2O5). The following UML diagram suggests classes, variables, and methods.

[image: image5]
The InterpolatorDriver class has three class variables. iLeft and iRight are the lower and upper indices of the range of points to be used for interpolation. For linear interpolation, specify two points, with iRight = iLeft + 1; for quadratic interpolation, specify three points, with iRight = iLeft + 2, and so on. Typically, the range bounded by these indices is much smaller than the range represented by the total length of the arrays, and it’s rarely worthwhile to use more than about 4 points (cubic interpolation).

In the main method, instantiate double arrays for the independent variable:

xArray ← {0.0, 0.05, 0.10, 0.20, 0.30, 0.50, 2.00}

and the dependent variable:

yArray ← {9.8, 19.3, 27.2, 41.0, 43.9, 54.9, 61.0}

Set iMax equal to xArray.length - 1. Ask for and input a value for the independent variable, x. Then call the class method, immediateLeft, which returns the index of the data point at or just before the input point. Then ask for and input a desired number of interpolation points with IO statements that look like this:
Enter P2O5 g/m2: 0.25
iLeft= 3

Enter number of points to use: 4

Using the input number of interpolation points as the argument, call the class method, setRange, to establish the lower and upper indices of the range of interpolation points. Then perform the interpolation and print the result like this:
Dry-Matter Produced= 43.2203125 g/m2

Write the immediateLeft method to implement a binary search. This should assume that the arrays have already been sorted so that the values in the xArray either increase or decrease monotonically. (It would be silly to try to use interpolation if the independent variable was not sorted!) Start with a conditional operator expression that sets a boolean variable called ascending based on whether xArray[iMax] is greater than or less than xArray[0]. Then, in a loop, if xArray is ascending and the value of x is greater than or equal to the value at the midpoint between iLeft and iRight, let iLeft ← midpoint index. Otherwise, let iRight ← midpoint index. Stop looping when iRight ‑ iLeft reaches one.

Write the setRange method so that if x is less than xArray[0] or greater than xArray[iMax], the range includes no more than the first two or last two data points in the data arrays. (Extrapolation is dangerous anyway, and we certainly don’t want to use anything fancier than linear extrapolation if we do it!) For all other cases, the number of points on one side of x should be no more than one greater than the number of points on the other side of x. In the middle of the data range, the iLeft and iRight should be approximately balanced around the point. It may be less than the desired number if the point is near an end of the data range.

Before you have main call Interpolator’s interpolate method, instantiate an object using iLeft and iRight for the low and high parameters in the constructor. Then use that object to call interpolator. Finally call errorEstimate and print it like this:
estimated error magnitude= 0.5921874999999999

The instance variable n is the number of interpolation points between iLeft and iRight, inclusive, and the four instance arrays should all be that length. The constructor should copy into xArr and yArr those parts of xArray and yArray that are between iLeft and iRight, and initialize correctLeft and correctRight with the values in yArr.

In Interpolator’s interpolate method, first use a loop to find the point that is nearest to x, and set a local variable y equal to the value of yArr at that point. Then implement the following algorithm:

for m=1 to m<n

 for i=0 to i<(n-m)

 LmX ← xArr[i] – x

 RmX ← xArr[i+m] – x

 RmL ← correctLeft[i+1] – correctRight[i]

 den ← LmX – RmX

 if den == 0

 print "Error, repeated point at" i

 correctLeft[i] ← LmX * RmL / den

 correctRight[i] ← RmX * RmL / den

 if 2*nearest < n-m

 dy ← correctLeft[nearest]

 else

 nearest ← nearest - 1

 dy ← correctRight[nearest]

 y ← y + dy

return y

Use this chapter’s embedded assignment, conditional operator expression, and prefix decrement capabilities to implement this algorithm as compactly as possible.

Have the errorEstimate method return the absolute value of dy.

5. [after §11.9] Bitwise Operations **:

This project introduces bitwise-manipulation operators (&, |, <<, >>, >>>, ^, and ~), which are not discussed elsewhere in the book. The bitwise-manipulation operators perform simultaneous bit manipulations and enable programs to process large quantities of binary information efficiently. This project is here because the solution uses a conditional operator.

The binary & and | operators can implement bitwise “and” and “or” operations on corresponding bits in a pair of 32-bit int operands. This bit-manipulation capability enables Java to efficiently process large quantities of raw binary information. We use this capability to encrypt information sent over the Internet and to process graphical images. Suppose you have a 32-bit pattern of 1’s and 0’s in an integer called mask. You can use mask to either set to 1 or reset to 0 any subset of the bits in another integer called data:

· data |= mask;
 drives to 1 all bits in data that correspond to 1 bits in mask.

· data &= mask; drives to 0 all bits in data that correspond to 0 bits in mask.

In particular, you can use a mask having only one 1 bit to see if that particular bit is 1 in data. If (mask & data) != 0, that data bit is 1. If (mask & data) == 0, that data bit is 0.

The << shift-left operator shifts the bit pattern to the left by a number of bits indicated by the operand to the right of the operator, and it shifts zero into the right end. Each left shift multiplies the numerical value of the int operand by 2. The >> arithmetic shift-right operator shifts the bit pattern to the right by a number of bits indicated by the operand to the right of the operator. To preserve the sign, it shifts into the left end whatever was there before. Each arithmetic-right shift divides the numerical value of the int operand by two. The >>> logical shift-right operator shifts the bit pattern to the right by a number of bits indicated by the operand to the right of the operator, and it shifts zero into the left end. The >>> operator is the logical opposite of the << operator.

Java also includes a complement operator, ~. The complement operator simply reverses the polarity of all bits in the following int operand. Each bit that is 1 becomes 0, and each bit that is 0 it becomes 1. For example, if number is initially 0, ~number is -1, and vice versa.

5. Write a program that uses bitwise operations to: (1) generate and display all power-of-two numbers in the range +128 to -128, and (2) display an arbitrary user-input integer.
Sample Session:

Decimal Binary

128 0000 0000 0000 0000 0000 0000 1000 0000

64 0000 0000 0000 0000 0000 0000 0100 0000

32 0000 0000 0000 0000 0000 0000 0010 0000

16 0000 0000 0000 0000 0000 0000 0001 0000

8 0000 0000 0000 0000 0000 0000 0000 1000

4 0000 0000 0000 0000 0000 0000 0000 0100

2 0000 0000 0000 0000 0000 0000 0000 0010

1 0000 0000 0000 0000 0000 0000 0000 0001

0 0000 0000 0000 0000 0000 0000 0000 0000

-1 1111 1111 1111 1111 1111 1111 1111 1111

-2 1111 1111 1111 1111 1111 1111 1111 1110

-4 1111 1111 1111 1111 1111 1111 1111 1100

-8 1111 1111 1111 1111 1111 1111 1111 1000

-16 1111 1111 1111 1111 1111 1111 1111 0000

-32 1111 1111 1111 1111 1111 1111 1110 0000

-64 1111 1111 1111 1111 1111 1111 1100 0000

-128 1111 1111 1111 1111 1111 1111 1000 0000

Enter any integer: 127
127 0000 0000 0000 0000 0000 0000 0111 1111

Implement your solution using one class. In your class, provide two methods – main and display.
Your main method should:

· Declare int number = 128;
· Include a while loop that loops while number is >= ­128.

· Call the display method, which prints the value of its passed-in number parameter.

· If number is greater than zero, use the >>= operator to do one arithmetic-right shift.

· If number equals zero, use the ~ operator to complement it.

· If number is less than zero, use the <<= operator to do one left shift.
· After the while loop, ask the user to input any number, and call the display method to print that number.

Write the display(number) method like this:
· Receive a number parameter.
· Print number’s value and a tab.
· Assign to a local variable named mask the value 1 shifted left 31 times. This puts a 1 in bit 31 and zeros in all other bits.
· Use a for loop to step through all 32 bits, doing the following in each step:

· Use a conditional operator whose condition is (mask & number != 0) to print either 1 or 0.
· After every fourth bit, print a single space to make the output readable.

5. Demonstrate the exclusive-or operation:

There is one other bitwise operator, the exclusive-or operator, ^. With the exclusive-or operator, you can use 1-bits in a mask integer to selectively invert corresponding bits in a data integer. To the above main method add code which uses the input number as a mask that complements individual bits in a data set composed of 32 zeros, and in another data set composed of 32 ones, like this:
Enter any integer: 43
43 0000 0000 0000 0000 0000 0000 0010 1011

0 0000 0000 0000 0000 0000 0000 0000 0000

43 0000 0000 0000 0000 0000 0000 0010 1011

-1 1111 1111 1111 1111 1111 1111 1111 1111

-44 1111 1111 1111 1111 1111 1111 1101 0100

6. [after §11.11] Heap Sort **:

In Chapter 10, Section 10.8, we described a simple sorting method called selection sort. Selection Sort is an in-place algorithm, since all the sorting activity occurs within the original array, and additional memory is not required. The Selection Sort algorithm has two nested loops. The outer loop ranges through all the elements in the array, and on average the inner loop ranges through about half the elements in the array. Thus, the time to complete a selection sort is proportional to the square of the number elements in the array. When the number of elements to be sorted is very large, like 1,000, or 1,000,000, the squared dependence on length becomes a problem.

There are several sorting algorithms whose time to completion is proportional to array length times the logarithm of the array length. Since the log2(1,000,000) ≈ 20, these algorithms are many orders of magnitude faster for large arrays. One of the best overall performers in this faster class of algorithms is an algorithm called Heap Sort. Like Selection Sort, Heap Sort is an in-place algorithm. First you arrange the values in your array into a partially ordered structure called a heap:

· The first element in the array is the top of the heap, and it always has the highest value.

· Assuming that first element in the array is at index=1 (you’ll have to translate that to 0 for Java!), the value of any “parent” element at index = i is always higher than both of the values of its two “child” elements at index 2*i and 2*i + 1.

To construct a heap out of an array of length n, loop through the (parent) elements from i = n/2 down to i = 1. For each of these elements, if it is not already larger than the larger of its two children, swap it with its larger child, and repeat with that child’s two children, and so on, until both children are smaller or there are no more children. The number of steps required to do this is approximately equal to half the total number elements times the log of that number.

A nice thing about a heap is that you can always get the largest value in the array instantly by just grabbing the value at the top of the heap. After you have done this, however, you are obliged to perform a duty – you must take some new value, insert it at the top of the heap and do the comparison with children and grandchildren until that new value “sifts down” to its proper place. Thus, each extraction of a “highest value” from a heap obliges you to create a new heap out of what remains. This takes an amount of work that is proportional only to the log of the number of the elements in the array.

As we take highest values off the top of the heap, it gets smaller and makes room in the original array to gradually accumulate a fully sorted sequence. Thus, we gradually transform the heap into a sorted array, as we did in Figure 10.11, when we gradually transformed an unsorted array into a sorted array.

First, copy the value currently in the highest-index array element into a temporary variable. Then copy the value on the top of the heap (at the low-index end of the array) to the highest-index array element, thereby converting that element to the high end of a completely sorted sequence. Then, put the copied value on the top of the heap, and perform the obligatory sift-down operation to convert what’s left into a new heap.

Repeat, moving the top of this smaller heap to the next point in the completed sequence at the next-highest array index, and so on, until the heap shrinks to zero length, and the completely sorted sequence includes all of the original array elements.

6. Write a Java program to perform a Heap Sort on an array of integers and generate the following output.
Output:

original array:

40 26 82 69 16 67 34 58 11 23 91 72

heap:

91 82 72 69 26 67 34 58 11 23 16 40

sorted array:

11 16 23 26 34 40 58 67 69 72 82 91

Here is a suggested UML diagram:

[image: image6]

In the HeapDriver class, have main instantiate an array using the integer constants shown in the output above. Since heapsort is an in-place sorting method, the array variable in the Heap class is just a reference to the array created by HeapDriver, and Heap’s methods will be altering the elements in HeapDriver’s original array.

In the Heap constructor, initialize array with the parameter value. Initialize length with array.length, parent with length/2, and unsortedLength with length. The unsortedLength variable is equal to the length of the current heap, and it is the index of the bottom of the currently sorted portion of the array.

In the heapsort method, call the createHeap and sortHeap methods.

In the createHeap method, loop from the initial parent down through parent = 1. In the loop, call siftDown with the value in array[--parent]. The pre-decrementing in this array argument converts from base-1 indexing to base-0 indexing, and it will eventually terminate the loop.

In the sortHeap method, while (--unsortedLength > 0), swap array[0] with array[unsortedLength], to put the top of the heap at the bottom of the sorted portion of the array, and call siftDown with the new value in array[0].

In the siftDown method, declare two local variables:
 parent = this.parent;
 child = 2*parent + 1;
Loop while (child < unsortedLength). In the loop, set child equal to the larger of the two children. Then, if the parameter value is less than the larger child’s value, assign that child’s array value to the local parent, change the local parent index to the local child index, and increment the local child index by one plus the new parent index. Otherwise, terminate the loop with a break statement. After the loop, set the local parent’s value equal to the parameter value.

6. Add an instance method called displayTree to the Heap class to display the heap hierarchy, and use this new method to show how the siftDown method alters the heap structure.

Modify the main method in HeapDriver so that right after you call HeapDriver’s display to display the heap, you call Heap’s displayTree to display the heap again in a hierarchical format like that shown below. This hierarchical display should put element zero at the top, elements 1 and 2 in the row below, elements 3, 4, 5, and 6 in the row below that, and elements 7, 8, 9, 10, and 11 in the bottom row. The two children of each parent should be below their parent and approximately equally spaced to the left and right of that parent. In the displayTree method, use a for loop with an empty-statement body to set the number of levels in the heap.
Output:

original array:

40 26 82 69 16 67 34 58 11 23 91 72

heap:

91 69 82 58 26 72 34 40 11 23 16 67

heap as tree:

 91

 69 82

 58 26 72 34

40 11 23 16 67

sorted array:

11 16 23 26 34 40 58 67 69 72 82 91
Now modify main to extract and display the value at the top of the heap. Then call siftDown(49) to insert the arbitrary new value, 49 at the top of the heap and sift it down to its proper place. Call displayTree again to show the change, and continue the process to sort the new array.

Output:

original array:

40 26 82 69 16 67 34 58 11 23 91 72

heap:

91 69 82 58 26 72 34 40 11 23 16 67

heap as tree:

 91

 69 82

 58 26 72 34

40 11 23 16 67

top = 91 new value= 49

new heap as tree:

 82

 69 72

 58 26 67 34

40 11 23 16 49

sorted array:

11 16 23 26 34 40 49 58 67 69 72 82

inelegant

inelegant

inelegant

Interpolator

+Interpolator(xArray : double[],

 yArray : double[], low : int, high : int)

+interpolate(x : double) : double

+getErrorEstimate() : double

-xArr : double[]

-yArr : double[]

-correctLeft : double[]

-correctRight : double[]

-n : int

-dy : double

-nearest : int=1

InterpolatorDriver

+main(args : String[]) : void

-immediateLeft(

 x : double, xArray : double[]) : int

-setRange(number : int) : void

-iLeft : int

-iRight : int

-iMax : int

HeapDriver

+main(args : String[]) : void

-display(array : int[]) : void

Heap

+Heap(array : int[])

+heapsort() : void

+createHeap() : void

-sortHeap() : void

+siftDown(value : int)

-array : int[]

-length : int

-parent : int

-unsortedLength : int

� This is an adaptation of John Conway's mathematical game called "Life," as described by Martin Gardner in Scientific American, vol. 223, no.4, October, 1970, pp 120-123.

� Data from Table 2.6 on p. 60 of Russell's Soil Conditions & Plant Growth, 11th edition, edited by Alan Wild, Wiley (1988).

� This algorithm constructs progressively higher-degree polynomial solutions out of a larger number of lower-degree polynomial solutions until it ends up with one highest-degree solution. The degree is m and the points i through i+m are the points on which a particular polynomial is based.

� data |= mask; is the same as data = (mask | data); and data &= mask; is the same as data = (mask & data);

