Chapter 15 Projects

1. [after §15.4] Road Use Survey **:

This project has two parts. In the first part you will create a mathematical model for traffic flowing on a highway past a particular place. Then you will use the model to generate a simulated dataset and store that dataset in a file. In the second part you will read the dataset from the file and display it as a histogram.
Using the extra step of storing simulation data in a file provides two important benefits: (1) You save a particular set of simulation data, and this allows you to re-run the analysis part of the program many times with exactly the same set of random data in each run. (2) Once you have debugged the analysis part of the program, you can replace the simulated data file with an experimental data file and analyze the real data without making any change to the program.

1. Modeling and Outputting to a File:

Create a class called RoadUseModel, and provide it with two instance variables: a String array called county, and a double array called useProfile. Provide a zero-parameter constructor, and this method:

public void save(String fileName, int samples);
Also provide a main method.

In the constructor, ask the user for the number of counties to identify. For each county, ask the user to enter a county name and an average fraction of all cars that will be from that county. Then create a “use profile,” which is the fractional accumulation of all cars from all counties identified so far, and display that profile as a histogram. The following sample session shows how this should work. The first row under cumulative use has a value equal to the first entry, 0.239. The second row has a value equal to the first and second entries, 0.239 + 0.044 = 0.283, etc., and of course the last value should be 1.0.

Sample session:

Enter number of counties: 5
Enter county name and fraction: Johnson 0.239
Enter county name and fraction: Wyandotte 0.044
Enter county name and fraction: Douglas 0.288
Enter county name and fraction: Shawnee 0.126
Enter county name and fraction: Other 0.303
Cumulative Use:

0.239 ***********

0.283 **************

0.571 ****************************

0.697 **********************************

1.000 **

Enter filename for data: highway10.data
Enter total number of samples: 500
In the save method, create an instance of PrintWriter, and write a sequence of county names taken from the input set of county names to this file. For each sample, select a random number between 0.0 and 1.0, compare that number with the cumulative use profile, find the smallest cumulative use value that is larger than the selected number, and write to the file the name of the last county in that cumulative-use category. For example, suppose a particular random number is 0.250. In the sample session above, the smallest cumulative use that is larger is 0.283, which corresponds to Johnson plus Wyandotte counties, so for this sample, write “Wyandotte” plus a whitespace delimiter, like “\n.”
In the main method, instantiate a RoadUseModel object. Ask the user for a file name and a total number of samples, and call the save method.

1. File Input and Analysis:

Create a class called RoadUseAnalysis, and provide it with three instance variables: an ArrayList called data, which you’ll fill with the data elements read from the file, an ArrayList called county, which you’ll fill with distinct county names, and an int array called frequency, whose elements will eventually be the number of times a particular county name appears in the data file. Provide this class with a constructor whose one parameter is the filename, a zero-parameter display method, and a main method.

In the constructor, create an instance of Scanner with the user-supplied filename. Then, while there is another data item, add that county name to the data array list, and if that county name is appearing for the first time, also add it to the county array list. Then, instantiate the frequency array with a number of elements equal to the total number of distinct county names. Then step through the data array, and increment the frequency which corresponds to each data element’s county name by one.

In the display method, loop through the counties and for each, display a histogram that looks like this (although random variation will make the details different) :

Sample session:

Enter data filename: highway10.data
Douglas 145 *****************************

Wyandotte 28 *****

Other 154 ******************************

Johnson 113 **********************

Shawnee 60 ************

In the main method, ask the user for a filename, use it to instantiate a RoadUseAnalysis object, and have that object call its display method.

2. [after §15.4] Mail Merge **:

Create a FormLetter class that handles the generation of mail merge form letters.

Implement a FormLetter constructor that contains a string parameter, formFilename. The parameter specifies the name of a file that contains a form letter. The constructor reads the form letter from the given file and loads its content into a formLetter array.

Declare formLetter to be a 20-element array of strings. The formLetter data member should store each line from the file as a single array element. For example, the formLetter.txt file below should fill up the first 11 elements in your formLetter array.

Implement a generateLetters method that contains a string parameter, insertionsFileName. The parameter specifies the name of a file that contains a list of insertions for the form letter. The method generates letters by inserting the insertions into the form letter. Note the @’s in the insertions.txt file. They act as delimiters for the four insertions for each letter. The first insertion substitutes for all occurrences of @1 in the form letter; the second insertion substitutes for all occurrences of @2 in the form letter; and so on. Provide a visual cue for letter separation by printing a line of dashes above each letter. Study the input files below and the resulting output to make sure that you understand the insertion process.

Use named constants when appropriate. Use private helper methods when appropriate. Since this is a relatively short program, put all code into one file.

Your code should be written so that the following main method and form and insertion files produce the output shown in the sample session shown below:

public static void main(String[] args)

{

 FormLetter letter1 = new FormLetter("formLetter..txt");

 FormLetter letter2 = new FormLetter("longLetter.txt");

 FormLetter letter3 = new FormLetter("formLetter.txt");

 letter3.generateLetter("insertions.txt");

} // end main

formLetter.txt file:

Dear @1,

Thanks for coming to the wedding. It was great seeing you

and @2. Thank you for the lovely @3.

I'm sure it'll be great for @4.

You and @2 are two of our closest friends -

let's make sure to keep in touch.

Yours truly,

John and Stacy

longLetter.txt file:

Dear @1,

Thanks for coming to the wedding. It was great seeing you

and @2. Thank you for the lovely @3.

I'm sure it'll be great for @4.

You and @2 are two of our closest friends -

let's make sure to keep in touch.

Yours truly,

John and Stacy

 ()

 ~(^^^^)~

) @@ \~_ |\

 / | \ \~ /

 (0 0) \ | |

 ---___/~ \ | |

 /'__/ | ~-_____/ |

 o _ ~----~ ___---~

 O // | |

 ((~\ _| -|

 o O //-_ \/ | ~ |

 ^ _ / ~ |

 | ~ |

 | / ~ |

 | (|

 \ \ /\

 / -_____-\ \ ~~-*

 | / \ \

 / / / /

 /~ | //~ |

                ~~~~        ~~~~

insertions.txt file:

Charlie Carpenter@Dianne Carpenter@cheese log@eating@

Mary Royeton@Josh, Melanie, Michael@candle holder@reading@

Reid@N/A@candle holder@our post-wedding garage sale@

Output:

Cannot open formLetter..txt

File longLetter.txt is too large to process.

--------------------------------------

Dear Charlie Carpenter,

Thanks for coming to the wedding. It was great seeing you

and Dianne Carpenter. Thank you for the lovely cheese log.

I'm sure it'll be great for eating.

You and Dianne Carpenter are two of our closest friends -

let's make sure to keep in touch.

Yours truly,

John and Stacy

--------------------------------------

Dear Mary Royeton,

Thanks for coming to the wedding. It was great seeing you

and Josh, Melanie, Michael. Thank you for the lovely candle holder.

I'm sure it'll be great for reading.

You and Josh, Melanie, Michael are two of our closest friends -

let's make sure to keep in touch.

Yours truly,

John and Stacy

--------------------------------------

Dear Reid,

Thanks for coming to the wedding. It was great seeing you

and N/A. Thank you for the lovely candle holder.

I'm sure it'll be great for our post-wedding garage sale.

You and N/A are two of our closest friends -

let's make sure to keep in touch.

Yours truly,

John and Stacy

3. [after §15.5 or §15.9 for part c ] File Converter **:
1. Implement a FileConverter class with a convertFile method that performs two file conversion tasks. The convertFile method should receive a conversionType parameter that specifies the type of file conversion desired and do the following:

· Prompt the user for a filename.

· Open the specified file as a text input file.

· Open another file as a text output file such that the output file’s name is the same as the input file’s name except that _new is appended to the filename prior to the extension. For example, in the sample session below, the first input file is test.txt and the first output file is test_new.txt. Another example: the input file is roster and the output file is roster_new.

· Perform the file utility option as specified by the conversionType parameter. The two file utility options are:

· Create an output file that is a double-spaced copy of the input file.

· Create an output file that is a copy of the input file except that the tabs are replaced with spaces.

· Close the file.

Have the convertFile method call at least one appropriate helping method.

Implement a FileConververterDriver class that prompts the user for a file utility option (double-spacing or tabs-to-spaces) and then calls the convertFile method appropriately.

Since the FileConverter class is just a collection of methods, and will contain no objects, use the static modifier for all of the methods in the FileConverter class. Warning: Don’t get into the habit of using static methods arbitrarily. Use static only for those methods that will never be associated with particular objects having distinct instance variables.

The tabs-to-spaces option requires more than just replacing each tab character with a fixed number of space characters. As shown in the sample session, you’ll need to prompt the user for the number of columns between tab stops. You’ll then need to use that number-of-columns value as part of a calculation for the number of spaces that are to be printed for the particular tab that you’re dealing with. If this doesn’t make sense, study the sample session and give it some thought.

In testing your program, you’ll need to view the contents of your input and output files. In order to evaluate your files’ tabs and spaces, you’ll want to open up your files with a monospaced font text editor with (monospaced font means that all the characters have the same width). If you are using Microsoft’s Windows, we suggest using Notepad since it uses monospaced font by default. For the Notepad application used, the tab settings were fixed with 8 columns between tab stops. That’s the reason for the 8 in the below sample session. If you’d like to test with other text editors, then you’ll need to check their tab stop settings and use them appropriately.

As stated previously, Notepad uses monospaced font by default. But Notepad supports non-monospaced fonts as well. If Notepad on your PC appears to use non-monospaced font, set its font by doing this from within Notepad as follows:

· In the pull-down Format menu, choose Font.

· In the Font box, choose Courier New (a ubiquitous monospaced font)

· Click OK.

In addition to generating hardcopy of your sample session, also generate labeled hardcopy of your input and output files. Of course, use a text editor with monospaced font when printing your files.

1. Add another file utility option that creates an output file that is a copy of the input file except that spaces are replaced with tabs.

Sample session (for parts a) and b)):

Welcome to File Converter Program

Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 6
Invalid selection.

Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 1
Enter current-directory file name or full path name:

:test.txt

Invalid filename.

Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 1
Enter current-directory file name or full path name:

test.txt

Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 2
Enter current-directory file name or full path name:

test_new.txt

Number of columns between tab stops ==> 8
Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 3
Enter current-directory file name or full path name:

test_new_new.txt

Number of columns between tab stops ==> 8
Options:

1) Add double-spacing to a file.

2) Convert a file's tabs to spaces.

3) Convert a file's spaces to tabs.

4) Quit

Enter 1, 2, 3, or 4 ==> 4
Files used in the above sample session (using a text editor with tab stops every 8 columns):


[image: image1]
1. [after §15.9] After creating the new file with the _new suffix, use the File class to delete the original file and rename the new file to the original file’s name.
4. [after §15.8] Appending Data to an Object File *:
This project asks you to implement the code needed to append data to an object file. To do this, you’ll need to implement what’s called a workaround that fixes a problem in the Java API. You’ll fix the problem by extending one of the existing Java API classes and modifying the parent class in the extension.

As we said in Section 15.8, the FileOutputStream constructor called in Figure 15.11 has only one parameter, so it does not support the append operation. If you run the WriteObject program in Figure 15.11 a second time with the same filename and then run the ReadObject program in Figure 15.12, you’ll get a result that is exactly like the result in Figure 15.12. The second output simply over-writes the first output and leaves just one object in the file.

But suppose you want to append the second WriteObject execution’s output to the data put into the file by the first WriteObject execution. Based on other file output opening statements illustrated in this chapter, the obvious thing to do is this: Replace the one-parameter FileOutputStream constructor with the two-parameter FileOutputStream constructor which has boolean append for the second parameter. Then run this modified WriteObject program twice ─ once with the second FileOutputStream argument equal to false, and once with the second FileOutputStream argument equal to true. If you were to use the FileSizes program in Section 15.9 to check the size of the data file after each execution of this modified WriteObject program, you’d see that the second execution approximately doubles the size of the data file. So this attempted append operation appends something. But then if you run the ReadObject program in Figure 15.12, you’ll get this:

Enter filename: objectFile.data
1       test    2.0
IO Error: null
Alas, this output is the same as the output displayed in Figure 15.12. It looks like there is still only one copy of the object in the file. In other words, even though something has been appended, you can’t read it.

The problem is that in each opening of an output file ObjectOutputStream’s constructor calls ObjectOutputStream’s writeStreamHeader method. But it should call that particular method only when there is no file or you want to overwrite everything in an existing file. When you want to append to an existing object file, instead of calling the writeStreamHeader method, the constructor should call the reset method. To work around this problem
 derive a new ObjectOutputStreamAppend class from the API ObjectOutputStream class. In your child class, make the one-parameter constructor call its parent’s constructor, and override the inherited writeStreamHeader method with a method that calls the parent’s reset method.

Then, when you want to append to an existing file, instead of opening that file with ObjectOutputStream and the one-parameter FileOutputStream, open it with ObjectOutputStreamAppend and the two-parameter FileOutputStream with the second argument equal to true. Your ObjectOutputStreamAppend constructor will immediately call its corresponding parent constructor. When this parent constructor calls the writeStreamHeader method, it calls the child’s method instead of its own, and that replaces the normal call to the parent’s writeStreamHeader method with a call to the parent’s reset method.

In addition to writing the ObjectOutputStreamAppend class, write a WriteObjectAppend class which enables a user to specify not only the file name but also whether a written TestObject is supposed to be the first one in the object file or is supposed to be appended to whatever data is already in the object file. Also ask the user for a unique id input to provide instance-variable differentiation between different objects. Write your program so that it works like this:

 
[image: image2]

[image: image3]
Here's  a       test


12345678901234567890


        90        90





tabss





tabs





2 spaces





test.txt





Here's  a       test





12345678901234567890





        90        90





all spaces





test_new_new.txt





Here's  a       test





12345678901234567890





        90        90





test_new_new_new.txt


  [part b) illustration]





tabs





2 spaces





tabss








Enter filename: objectFile.data


Enter append(y/n): n


Enter id: 1





Two sample sessions of the WriteObjectAppend program:





Enter filename: objectFile.data


Enter append(y/n): y


Enter id: 2





Sample session of subsequent ReadObject program:





Enter filename: objectFile.data


1       test    2.0


2       test    2.0








� This particular workaround was suggested on Sun's website in an answer to a "frequently asked question" (FAQ).





