Chapter 7 Projects

1. [after §7.5 and §7.9] Linked List ***:
Suppose you want to create several objects and you want to put them together in a group that can be accessed through a single reference variable. A powerful way to do this is to link them all together in a single “chain,” where each object is one link and each object contains a pointer to the next object. This chain is called a “linked list.” A single reference points to a header object, this contains a reference that points to the next object, it contains a reference that points to the next object, and so on, until the contained reference variable has a null value, which means there is nothing more. You can always find everything in the list by just stepping through it, from one object to the next, until you get to the final null reference.

Start by creating a header object and have it point to a null, which represents the end of the list. The reference variable for the entire list always points to this header, and the header points to one of the (other) objects in the list. One way to construct a linked list is to make the next variable in each new object point to the previously created object, and update the header’s next variable so that it always points to the most recently created object:

[image: image1]

For example, suppose you want to create a group of recipes, like those that people write on 3" x 5" cards and put into a box in the kitchen. Each recipe is an object of the class described by the following UML class diagram:

[image: image2]
The listNames method lists the name of each object in the list, including the header. The find method returns a reference to the object whose name is the same as the argument, but if the argument name cannot be found, it returns a null. The findBefore method returns a reference to the object that is before the object named in the argument, but if the argument name cannot be found, it returns a null. The removeNext method removes from the list the object that follows the object calling the method, and it returns a reference to the removed object. Removing an object extracts it from the list but does not delete it. The insertAfter method inserts the object calling the method into the list immediately after the object referenced by the argument. The following driver illustrates the use of these methods:

/**

* RecipeDriver.java

* Dean & Dean

*

* This demonstrates creation and use of a list of recipes.

**/
import java.util.Scanner;
public class RecipeDriver

{

 public static void main(String[] args)

 {
 Scanner stdIn = new Scanner(System.in);

 Recipe recipes = null; // list header

 Recipe before, current; // previous and current objects

 Recipe recipe1;

 Recipe recipe2;

 Recipe recipe3;

 Recipe recipe4;

 String name;

 recipes = new Recipe(); // a header is required!

 recipe1 = new Recipe();

 recipe2 = new Recipe();

 recipe3 = new Recipe();

 recipe4 = new Recipe();

 recipes.initialize("myrecipes", "A Balanced Diet");

 recipe1.initialize("milk",

 "milk a cow" +

 "\npour milk into a bottle" +

 "\nput bottle into a refrigerator");

 recipe2.initialize("cake",

 "roll it up, roll it up, throw it in a pan" +

 "\nbake it in the oven as fast as you can");

 recipe3.initialize("beans",

 "fill pan with water" +

 "\nadd beans" +

 "\nboil until done and pour off water");

 recipe4.initialize("junkfood",

 "go to a store" +

 "\nbuy something at the checkout counter");

 recipe1.insertAfter(recipes);

 recipe2.insertAfter(recipes);

 recipe3.insertAfter(recipes);

 recipe4.insertAfter(recipes);

 recipes.listNames();

 do

 {

 System.out.print("\nExtract recipe name: ");

 name = stdIn.nextLine();

 before = recipes.findBefore(name);

 } while (before == null);

 System.out.println("The name before that is: " +

 before.getName());

 current = before.removeNext();

 System.out.println("The name removed is: " +

 current.getName());

 System.out.println("The recipe is:\n" +

 current.getRecipe());

 recipes.listNames();

 do

 {

 System.out.print("\nInsert after recipe name: ");

 name = stdIn.nextLine();

 before = recipes.find(name);

 } while (before == null);

 current.insertAfter(before);

 recipes.listNames();

 } // end main

} // end class RecipeDriver

To remove or insert an object in a linked list, we need a reference to the object immediately before the object we care about. That’s because we always have to change the value of one of the instance variables (the next variable) in this preceding object. This linkage management complicates the code somewhat. Perhaps it will be easier to understand when you also look at a typical output.

Sample session:

Names:

myRecipes

junkfood

beans

cake

milk

Extract recipe name: beans
The name before that is: junkfood

The name removed is: beans

The recipe is:

fill pan with water

add beans

boil until done and pour off water

Names:

myRecipes

junkfood

cake

milk

Insert after recipe name: milk
Names:

myRecipes

junkfood

cake

milk

beans

1. [after §7.5] Write code for the Recipe class that conforms to the UML class diagram and allows the above driver to produce the above output.

1. [after §7.9] To the Recipe class created in part a), add a constructor that initializes the object as it is created and automatically inserts it at the head of the list – immediately after the header object. Don’t forget to provide an explicit no-argument constructor also, so the existing driver still works. Design this no-argument constructor so that it automatically creates the header object. Modify the above driver so that it produces the same sample session by using the new constructors instead of the combination of Java’s default constructor, the initialize method, and insertAfter method.

2. [after §7.6] Automobile Description *:

Write a program that asks the user how many automobiles are to be described, and for each automobile it inputs the user’s selection of make and color. Then it outputs color and make. Although you could do this easily using a simple procedural program, do it by using a main method in class AutomobileDriver to instantiate an object called auto from a class Automobile. Make your classes conform to the following UML class diagram:

[image: image3]
Let Automobile methods setMake and setColor do the prompting and inputting for make and color, and include input verification which asks again if a selection is illegal. Let Automobile methods printColor and printMake print color and make on one line. In AutomobileDriver, after asking auto to call setMake and setColor, use auto.printColor().printMake(); to chain the two printing methods. Write code so that the program can produce the following display:

Sample session:
How many cars do you want to consider? 2

Select Buick, Chevrolet, or Pontiac (b,c,p): x

The only valid selections are 'b', 'c', or 'p'

Select Buick, Chevrolet, or Pontiac (b,c,p): p

Select blue, green, or red (b,g,r): r

 red Pontiac

Select Buick, Chevrolet, or Pontiac (b,c,p): c

Select blue, green, or red (b,g,r): g

 green Chevrolet
3. Carbon Cycle ***:

1. [after §7.7] Write a pair of classes for a program that models the carbon cycle in an ecosystem. Use two generic classes. One class, Entity, defines things. The other class, Relationship, defines interactions. Partitioning everything into these two general categories simplifies the code in each individual category.

Make your classes conform to this UML class diagram:

[image: image4]
In the Entity class, the algorithm for the change method is:

accumulation ← accumulation + increment

The algorithm for the doIt method is:

mass ← mass + accumulation;

if (mass < 0.0)

 mass ← 0.0

accumulation ← 0

The idea is to calculate all changes based on conditions at one particular time. Then, after all the changes have been calculated, go back and implement those changes. This two-step process avoids the inconsistency that would occur if you were to implement each change right after you calculated it. If you implemented as you went along, some changes would be based on “before” conditions and other changes would be based on “after” conditions.

In the Relationship class, the algorithm for the synthesize method is:

demand ← time * plant fixing rate * plant mass /

 (1 + plant mass / plant maximum mass)

transfer ← demand / (1 + plant mass / atmosphere mass)

change atmosphere by -transfer

change plants by +transfer

The algorithm for the eat method is:

demand ← time * animal eating rate * animal mass

transfer ← demand / (1 + animal mass / plant mass)

change plants by -transfer

change animals by +transfer

The algorithm for the rot method is:

transfer ← time * plant rotting rate * plant mass

change plants by -transfer

change bacteria by +transfer

transfer ← time * animal rotting rate * animal mass

change animals by -transfer

change bacteria by +transfer

The algorithm for the breathe method is:

transfer ← time * plant breathing rate * plant mass

change plants by -transfer

change atmosphere by +transfer

transfer ← time * animal breathing rate * animal mass

change animals by -transfer

change atmosphere by +transfer

transfer ← time * bacteria breathing rate * bacteria mass

change bacteria by -transfer

change atmosphere by +transfer

This driver should produce the output that follows it:

/***

* CarbonCycleDriver.java

* Dean & Dean

*

* This drives Entities who are members of a food web.

* All Relationships are some kind of carbon transfer:

* (1) photosynthesis: plants take from atmosphere

* (2) eating: animals take from plants

* (3) rotting: plants & animals give to bacteria

* (4) breathing: plants, animals, bacteria give to atmosphere

***/

import java.util.Scanner;

public class CarbonCycleDriver

{

 public static void main(String[] args)

 {
 Scanner stdIn = new Scanner(System.in);
 int steps; // total number of simulation steps

 double timeStep; // time increment in each step

 double demand; // amount demanded in particular step

 double transfer; // amount transferred between entities

 Relationship carbon = new Relationship();

 Entity atmosphere = new Entity();

 Entity plants = new Entity();

 Entity animals = new Entity();

 Entity bacteria = new Entity();

 // configure and initialize system

 // initialize causal per unit rate parameters

 plants.setFixingInputRate(0.02);

 plants.setRottingOutputRate(0.005);

 plants.setBreathingOutputRate(0.005);

 animals.setEatingInputRate(0.021);

 animals.setRottingOutputRate(0.01);

 animals.setBreathingOutputRate(0.01);

 bacteria.setBreathingOutputRate(0.05);

 // initialize entity constraint and state variables

 plants.setMassMax(5000.0);

 atmosphere.setMass(1000.0);

 plants.setMass(1000.0);

 animals.setMass(10.0);

 bacteria.setMass(100.0);

 // set up simulation

 System.out.print("Enter size of time step (0.1 to 30): ");

 timeStep = stdIn.nextDouble();

 System.out.print("Enter total number of steps: ");

 steps = stdIn.nextInt();

 // do simulation

 for (int step=0; step<steps; step++)

 {

 // evaluate inter-entity transfers based on old states

 // (1) plants take from atmosphere, as available

 carbon.synthesize(atmosphere, plants, timeStep);

 // (2) animals take from plants, as available

 carbon.eat(plants, animals, timeStep);

 // (3) plants and animals give to bacteria

 carbon.rot(plants, animals, bacteria, timeStep);

 // (4) plants animals and bacteria give to atmosphere

 carbon.breathe(plants, animals, bacteria, atmosphere,

 timeStep);

 // update entity states with accumulated changes

 atmosphere.doIt();

 plants.doIt();

 animals.doIt();

 bacteria.doIt();

 // output as int for readability

 System.out.println(

 "atmosphere= " + (int) atmosphere.getMass() +

 " plants= " + (int) plants.getMass() +

 " animals= " + (int) animals.getMass() +

 " bacteria= " + (int) bacteria.getMass());

 } // end for

 } // end main

} // end class CarbonCycleDriver

Sample session:

Enter size of time step (0.1 to 30): 30

Enter total number of steps: 10

atmosphere= 1053 plants= 943 animals= 10 bacteria= 103

atmosphere= 1100 plants= 905 animals= 10 bacteria= 93

atmosphere= 1127 plants= 879 animals= 10 bacteria= 92

atmosphere= 1148 plants= 861 animals= 10 bacteria= 88

atmosphere= 1162 plants= 847 animals= 11 bacteria= 87

atmosphere= 1173 plants= 838 animals= 11 bacteria= 86

atmosphere= 1181 plants= 830 animals= 11 bacteria= 85

atmosphere= 1187 plants= 825 animals= 11 bacteria= 85

atmosphere= 1191 plants= 821 animals= 12 bacteria= 84

atmosphere= 1195 plants= 817 animals= 12 bacteria= 84

1. [after §7.9] Revise the driver and Entity classes to shift all of the initialization operations to Entity constructors.

4. [after §7.8] IP Address *:
Every computer on the Internet has a unique identifying number, called an Internet protocol (IP) address. To contact a computer on the Internet, you send a message to the computer’s IP address. Here are some typical IP addresses:

216.27.6.136

224.0.118.62

There are different formats for displaying IP addresses, but the most common format is the dotted decimal format. The above two IP addresses use the dotted-decimal format. It’s called “dotted” because dots are used to split up the big IP address number into four smaller numbers. It’s called “decimal” because decimal numbers are used (as opposed to binary) for the four smaller numbers.

Each of the four smaller numbers is called an octet because each number represents eight bits (oct means eight). For example, the 216 octet represents 11011000 and the 27 octet represents 00011011.

Implement an IpAddress class that stores an IP address as a dotted-decimal string and as four octet ints.

You must implement all of the following:

Instance variables:

dottedDecimal – a dotted-decimal string. Example value: "216.27.6.136"
firstOctet, secondOctet, thirdOctet, fourthOctet – four int variables that store the octets for an IP address
Constructor:

This constructor receives one parameter, a dotted-decimal string. You may assume that the parameter’s value is valid (i.e., no error checking required). The constructor initializes the instance variables with appropriate values. There are many ways to solve the problem of extracting octets from the given dotted-decimal string. We recommend that you use String methods to extract the individual octets as strings, and then use parseInt method calls to convert the octet strings to ints.
getDottedDecimal method:

This is a standard accessor method that simply returns the dottedDecimal instance variable’s value.

getOctet method:

This method receives the position of one of the octets (1, 2, 3, or 4) and returns the octet that’s at that position.

Provide a driver class that tests your IpAddress class. Your driver class should contain this main method:

public static void main(String[] args)

{

 IpAddress ip = new IpAddress("216.27.6.136");

 System.out.println(ip.getDottedDecimal());

 System.out.println(ip.getOctet(4));

 System.out.println(ip.getOctet(1));

 System.out.println(ip.getOctet(3));

 System.out.println(ip.getOctet(2));

} // end main

Using the above main method, your program should generate the following output.

Sample output:

216.27.6.136

136

216

6

27

5. [after §7.9] Fraction Handler **:
5. Write a Fraction class that implements these methods:

· add ─ This method receives a Fraction parameter and adds the parameter fraction to the calling object fraction.

· multiply ─ This method receives a Fraction parameter and multiplies the parameter fraction by the calling object fraction.

· print ─ This method prints the fraction using fraction notation (1/4, 21/14, etc.)

· printAsDouble ─ This method prints the fraction as a double (0.25, 1.5, etc.)

Separate accessor methods for each instance variable in the Fraction class.

Provide a driver class, FractionDemo, that demonstrates this Fraction class. The driver class should contain this main method:

public static void main(String[] args)

{

 Scanner stdIn = new Scanner(System.in);

 Fraction c, d, x; // Fraction objects

 System.out.println("Enter numerator; then denominator.");

 c = new Fraction(stdIn.nextInt(), stdIn.nextInt());

 c.print();

 System.out.println("Enter numerator; then denominator.");

 d = new Fraction(stdIn.nextInt(), stdIn.nextInt());

 d.print();

 x = new Fraction(); // create a fraction for number 0

 System.out.println("Sum:");

 x.add(c).add(d);

 x.print();

 x.printAsDouble();

 x = new Fraction(1, 1); // create a fraction for number 1

 System.out.println("Product:");

 x.multiply(c).multiply(d);

 x.print();

 x.printAsDouble();

 System.out.println("Enter numerator; then denominator.");

 x = new Fraction(stdIn.nextInt(), stdIn.nextInt());

 x.printAsDouble();

} // end main
Note that this demonstration driver does not call the accessor methods. That’s OK. Accessor methods are often implemented regardless of whether there’s an immediate need for them. That’s because they are very useful methods in general and providing them means that future code can use them when the need arises.

Sample session:

Enter numerator; then denominator.

5

8

5/8

Enter numerator; then denominator.

4

10

4/10

Sum:

82/80

1.025

Product:

20/80

0.25

Enter numerator; then denominator.

6

0

infinity

5. Modify the code so that it can handle negative numerators and negative denominators, and provide a helping method that performs fraction reduction.

Sample session using negative numbers and reduction:

Enter numerator; then denominator.

-5

-8

5/8

Enter numerator; then denominator.

4

-10

-2/5

Sum:

9/40

0.225

Product:

-1/4

-0.25

Enter numerator; then denominator.

0

-0

indeterminate

6. [after §7.10] Electric Circuit **:

Consider a simple electric circuit that has branches and nodes. Branches connect nodes. Each branch has an inductance (measured in Henries) in series with a resistance (measured in Ohms). The voltage drop across the combination is the inductance in Henrys times the rate of change in current per unit time (amps per second) plus the current (amps) times the resistance (ohms). Each node has a capacitance (measured in Farads) going from the node to a common ground. This circuit is useful for low-pass filters ─ filters that eliminate high-frequency noise.

Here is a driver that configures and exercises a balanced-T low-pass filter circuit:

/***

* ElectricCircuitDriver.java

* Dean & Dean

*

* This class drives the Branch and Node classes to

* configure and simulate a T-type low-pass filter.

***/

import java.util.Scanner;
public class ElectricCircuitDriver

{

 public static void main(String[] args)

 {
 Scanner stdIn = new Scanner(System.in);
 double timeStep = 1.0E-5;

 int steps; // max steps

 int outputInterval; // steps between outputs

 // configure circuit

 Node node1 = new Node();

 Node node2 = new Node();

 Branch branchA = new Branch();

 Branch branchB = new Branch();

 node2.setFarads(1.0e-7); // 0.1 microfarad

 branchA.setFrom(node1);

 branchA.setTo(node2);

 branchA.setHenrys(1.0e-3); // 1.0 millihenry

 branchA.setOhms(100.0);

 branchB.setFrom(node2); // To ground

 branchB.setHenrys(1.0e-3);

 branchB.setOhms(100.0);

 System.out.print("Enter seconds per timeStep(<1.0E-8): ");

 timeStep = stdIn.nextDouble();

 System.out.print("Enter number of steps(15000?): ");

 steps = stdIn.nextInt();

 System.out.print("Enter steps per output(1000?): ");

 outputInterval = stdIn.nextInt();

 node1.setVolts(1.0);

 for (int step=0; step<steps; step++)

 {

 // compute changes

 branchA.accumulate(timeStep);

 branchB.accumulate(timeStep);

 node2.accumulate(timeStep, branchA.getAmps());

 node2.accumulate(timeStep, -branchB.getAmps());

 // implement changes

 branchA.doIt();

 branchB.doIt();

 node2.doIt();

 // display output

 if (step % outputInterval == 0)

 {

 System.out.println("at time = " +

 (int) (1.E6 * step * timeStep) +

 " microseconds: Load volts= " +

 (int) (1.E3 * branchB.getAmps() * branchB.getOhms())

 + " millivolts");

 }

 } // end for

 } // end main

} // end ElectricCircuitDriver class

The driver creates and exercises the following circuit:

[image: image5]
Define classes for nodes and branches in accordance with the following UML diagram:

[image: image6]
The node’s accumulate method accumulates voltage change in one time increment, using the current at the beginning of that time increment. Its algorithm is:

accumulation ← accumulation + timeStep * amps / farads

The algorithm for the Node.doIt method is:

volts ← volts + accumulation

accumulation ← 0

The branch’s accumulate method computes current change in one time increment, using voltages and current at the beginning of that time increment. If the Node parameter is null, the corresponding volts = 0.0. Otherwise, it is the volts of that node. The voltage drop is the from node volts minus the to node volts. Its algorithm is:

accumulation ← accumulation + timeStep *
 ((fromVolts - toVolts) - amps * ohms) / henrys;
The algorithm for the Branch.doIt method is:

amps ← amps + accumulation

accumulation ← 0

Sample session:

Enter seconds per timeStep(<1.0E-8): 1e-8
Enter number of steps(15000?): 15000
Enter steps per output(1000?): 1000
at time = 0 microseconds: Load volts= 0 millivolts

at time = 10 microseconds: Load volts= 93 millivolts

at time = 20 microseconds: Load volts= 366 millivolts

at time = 30 microseconds: Load volts= 537 millivolts

at time = 40 microseconds: Load volts= 533 millivolts

at time = 50 microseconds: Load volts= 486 millivolts

at time = 60 microseconds: Load volts= 479 millivolts

at time = 70 microseconds: Load volts= 497 millivolts

at time = 80 microseconds: Load volts= 506 millivolts

at time = 90 microseconds: Load volts= 502 millivolts

at time = 100 microseconds: Load volts= 498 millivolts

at time = 110 microseconds: Load volts= 498 millivolts

at time = 120 microseconds: Load volts= 500 millivolts

at time = 130 microseconds: Load volts= 500 millivolts

at time = 140 microseconds: Load volts= 500 millivolts
7. [after §7.10] Cost Accounting ***:

Write an object-oriented program that demonstrates cost accounting in a manufacturing plant. Make the program produce the following output.

Output:

Assets

 cash 6,800.00

 raw material 4,200.00

 work in process 300.00

 finished goods 0.00

Liabilities

 wages payable 0.00

Net Worth

 equity (10,000.00)

Revenue

 sales (2,600.00)

Expenses

 material expense 500.00

 labor expense 600.00

 overhead expense 200.00

job record of work in process = 300.0

Organize the code in accordance with this UML class diagram:

[image: image7]
In the driver class, the main method is:

public static void main(String[] args)

{

 double amount; // a working variable

 CostAccounting accounts = new CostAccounting();

 Job job1;

 Job job2;

 // establish business

 accounts.invest(10000.);

 accounts.purchase(5000.);

 // manufacture products

 job1 = new Job(accounts, 500., 600., 200.);

 job2 = new Job(accounts, 300., 0, 0);

 job1.finish();

 accounts.payWages();

 // sell all finished products

 if (job1.getStatus() == 'f')

 {

 accounts.sell(job1, 2.0);

 }

 if (job2.getStatus() == 'f')

 {

 accounts.sell(job2, 2.0);

 }

 // do trial balance

 accounts.balance();

 // work in process reconciliation

 amount = 0;

 if (job1.getStatus() == 'p')

 {

 amount += job1.findCost();

 }

 if (job2.getStatus() == 'p')

 {

 amount += job2.findCost();

 }

 System.out.println(

 "\njob record of work in process = " + amount);

} // end main

In the CostAccounting class, all the instance variables should be references to objects of the Account class. The invest method should debit cash and credits equity. The purchase method should debit rawMaterial and credit cash. The payWages method should credit cash and debit wagesPayable by the amount of wagesPayable. The sell method should set job status to ‘s’, debit materialExpense by job material, debit laborExpense by job labor, and debit overheadExpense by job overhead. It should credit finishedGoods by the total job cost, and it should debit cash and credit sales by that amount times the factor passed into sell as an argument. The balance method should use the printf method to round money to the nearest penny. Insert commas and use parentheses for negative values.

In the Job class, the constructor should start a new job by storing a reference to the object that contains references to all general accounts, and storing the amounts of individual job material, labor, and overhead. The constructor also should debit workInProcess and credit rawMaterial by the amount of material, and it should debit workInProcess and credit wagesPayable by the total of labor and overhead. The finish method should credit workInProcess and debit finishedGoods by the total job cost (material + labor + overhead), and it should set status to ‘f’.

8. [after §7.10] Political Campaign ***:

This is Chapter 3’s Project 8 solved in a different way. By passing reference variables in arguments we do a better job of modularizing the code and greatly simplify the main method. This project includes several examples of overloaded methods and overloaded constructors.

Here is the driver:

/**

* PoliticalCampaignDriver.java

* Dean & Dean

*

* This program gathers statistics and expected probabilities.

* It projects votes in various voting categories, estimates

* funds that will be raised, and estimates number of work

* hours that will be required. It uses the class

* PoliticalCampaign, which uses classes Voters and Workers.

**/

public class PoliticalCampaignDriver

{

 public static void main(String[] args)

 {

 PoliticalCampaign campaign = new PoliticalCampaign();

 campaign.gatherData();

 campaign.evaluateProspects();

 campaign.budgetMoney();

 campaign.planTime();

 } // end main

} // end class PoliticalCampaignDriver

Write classes PoliticalCampaign, Voter, and Worker so that the overall program is able to generate the following display.

Sample session:

POLITICAL CAMPAIGN PLANNER

Enter total registered voters: 5000
Enter our party registered voters: 1500
Enter independent registered voters: 2000
Enter our party regular registered voters: 900
Enter independent regular registered voters: 1000
Enter expected total turnout: 2000
Enter our party regular favorable votes: 1.0
Enter independent regular favorable votes: 0.5
Enter our party occasional favorable votes: 0.6
Enter other favorable votes: 0.1
Expected votes:

Regular party votes = 749

Regular independent votes = 416

Occasional party votes = 48

Other votes = 33

total expected votes = 1246

votes needed = 1001

Enter number of workers available: 25
Expected Funding:

Enter number of early $500 donors: 4
Enter number of solicitation calls: 50
Amount available for campaign = 2250.0

Work Plan:

Call first pool? [yes:1, no:0]: 1
Call second pool? [yes:1, no:0]: 1
Call third pool? [yes:1, no:0]: 0
Enter number of polling places: 2
Clerical hours = 95.0

Telephone hours = 200.0

Poll watcher hours = 20.0

Transport hours = 95.0

Overhead hours = 102.5

Total worker hours = 512.5

Hours per worker = 20

Make these classes conform to the following UML class diagram:

[image: image8]
In class PoliticalCampaign, the constructor instantiates a Voter object for each Voter reference variable. It uses the constructor with the String argument for all but the last two Voter objects.

The gatherData method sets the turnout in total. It sets the maximum in ourPartyOccasionals using the algorithm:

maximum ← ourParty maximum – ourPartyRegulars maximum

It sets the maximum in others using the algorithm:

maximum ← total maximum – ourPartyRegulars maximum –

 independentRegulars maximum – ourPartyOccasionals maximum

It sets the favorable fraction in ourPartyRegulars, independentRegulars, ourPartyOccasionals, and other. It sets the no-argument version to set turnout in ourPartyRegulars and independentRegulars. It uses the double-argument version to set turnout in ourPartyOccasionals and others, where the argument is:

fraction ← (total turnout – ourPartyRegulars turnout – independentRegulars turnout) / (registered total – registered ourPartyRegulars – registered independentRegulars)
The evaluateProspects method uses the findVotes method in the Voter class to print the expected votes in each voting pool, and accumulates them to obtain expected total votes. The votes needed to win is one more than half of the total votes.

The budgetMoney method gathers data to estimate money available, using the algorithm:

budget ← early donors * $500.00 + calls * dollars per

 solicitation

It also initializes workers’ telephone caller time using the algorithm:

telephone caller time ← 2.0 * calls * telephone hours per call
The planTime method multiplies an input 1 or zero times the total number of people in each of the pools: ourPartyRegulars, independentRegulars, and ourPartyOccasionals. Then it multiplies the sum of these products by telephone hours per call to get additional telephone caller time. (Using a 1 or zero input for a factor either includes or doesn’t include a particular category in a summation.) The planTime method in PoliticalCampaign delegates rest of the planning to the workers by calling the planTime method in the Workers class.

The Voters class defines objects that describe the various voter pools. The String-argument constructor initializes maximum by asking the user to provide the number of registered voters in each pool. The zero-argument setTurnout method computes the turnout as the product of maximum and the regular turnout fraction. The double-argument setTurnout method computes the turnout as the product of maximum and the supplied fraction. The String-argument setFavorable method uses the argument in a prompt to help the user supply an input value. The findVotes method returns the product of turnout and favorable fraction.

In the Workers class, the planTime method calculates clerical time by multiplying input calls by clerical hours per call. It calculates poll watcher time using the algorithm:

poll watcher time ← 10.0 * number of polling places
Poll watchers have check lists to keep track of who has not yet voted so that telephone callers at party headquarters can dispatch transport workers to help get friendly voters to the polls. This method also calculates time to transport old and infirm friendly voters to the polling places by multiplying input calls by transport hours per call. Overhead hours is (clerical time, telephone caller time, poll watcher time, and transport time) times the assumed overhead fraction, and we add these overhead hours to the other hours to obtain the total time printed out.

first

object

null

step 1:

header

object

first

object

null

second

object

first

object

null

second

object

third

object

header

object

step 2:

step 3:

header

object

step 0:

header

object

null

+initialize(name : String, recipe : String) : void

+getName() : String

+getRecipe() : String

+getNext() : Recipe

+listNames() : void

+find(name : String) : Recipe

+findBefore(name : String) : Recipe

+removeNext() : Recipe

+insertAfter(previous : Recipe) : void

-name : String

-recipe : String

-next : Recipe

Recipe

AutomobileDriver

main(args : String[]) : void

Automobile

setMake() : void

setColor() : void

printMake() : void

printColor() : void

make : String

color : String

+setMass(amount : double) : void

+setMassMax(amount : double) : void

+setFixingInputRate(rate : double) : void

+setEatingInputRate(rate : double) : void

+setRottingOutputRate(rate : double) : void

+setBreathingOutputRate(rate : double) : void

+getMass() : double

+getMassMax() : double

+getFixingInputRate() :double

+getEatingInputRate() :double

+getRottingOutputRate() :double

+getBreathingOutputRate() :double

+change(increment: double) : void

+doIt() : void

Entity

-fixingInputRate : double = 0

-eatingInputRate : double = 0

-rottingOutputRate : double = 0

-breathingOutputRate : double = 0

-massMax : double = 1.0e100

-mass : double

-accumulation : double = 0

Relationship

+synthesize(atmosphere : Entity,

 plants : Entity, time : double) : void

+eat(plants : Entity, animals : Entity,

 time : double) : void

+rot(plants : Entity, animals : Entity,

 bacteria : Entity, time : double) : void

+breathe(plants : Entity, animals : Entity,

 bacteria : Entity, atmosphere : Entity,

 time : double) : void

 branchA

Source

resistance

(100 Ohms)

Filter inductance

(1.0 mH)

 branchB

Filter

inductance

(1.0 mH)

Load

resistance

(100 Ohms)

Load

voltage

 node1

 node2

Capacitance

microFarad

 1-volt

 step

 Ground node

+setFarads(farads : double) : void

+setVolts(volts : double) : void

+getVolts() : double

+accumulate(timeStep : double, amps : double) : void

+doIt() : void

Node

-farads : double = 1.0E-12

-accumulation : double = 0.0

-volts : double = 0.0

Branch

-from : Node

-to : Node

-henries : double = 1.0E-9

-ohms : double = 0.0

-accumulation : double = 0.0

-amps : double = 0.0

+setFrom(from : Node) : void

+setTo(to : Node) : void

+setHenrys(henrys : double) : void

+setOhms(ohms : double) : void

+setAmps(amps : double) : void

+getOhms() : double

+getAmps() : double

+accumulate(timeStep : double) : void

+doIt() : void

CostAccountingDriver

+main(args : String) : void

Account

-balance : double = 0

+debit(amount : double) : void

+credit(amount : double) : void

+getBalance() : double

Job

-accounts : CostAccounting

-material : double = 0.0

-labor : double = 0.0

-overhead : double = 0.0

-status : char = 'p'

+Job(accounts : CostAccounting,

 material : double, labor : double,

 overhead : double)

+finish() : void

+getMaterial() : double

+getLabor() : double

+getOverhead() : double

+getStatus() : char

+findCost() : double

+setStatus(status : char) : void

CostAccounting

-cash : Account

-rawMaterial : Account

-workInProcess : Account

-finishedGoods : Account

-wagesPayable : Account

-equity : Account

-sales : Account

-materialExpense : Account

-laborExpense : Account

-overheadExpense : Account

+getRawMaterial() : Account

+getWorkInProcess() : Account

+getFinishedGoods() : Account

+getWagesPayable() : Account

+invest(amount : double) : void

+purchase(amount : double) : void

+payWages() : void

+sell(job : Job, factor : double) : void

+balance() : void

PoliticalCampaignDriver

+main(args : String) : void

Workers

-CLERICAL_HOURS_PER_CALL :

 double = 0.05

-TRANSPORT_HOURS_PER_CALL :

 double = 0.05

-OVERHEAD_FRACTION : double = 0.25

-workers : int = 25

-telephoneCallerTime : double = 0.0

+Workers(workers : int)

+setTelephoneCallerTime(time : double) : void

+getTelephoneCallerTime() : double

+planTime(calls: double) : void

Voters

-REGULAR_TURNOUT_FRACTION :

 double = 0.833

-maximum : int

-turnout : int

-favorable : double

+Voters()

+Voters(type : String)

+setMaximum(maximum : int) : void

+setTurnout(turnout : int) : void

+setTurnout() : void

+setTurnout(fraction : double) : void

+setFavorable(fraction : double) : void

+setFavorable(type : String) : void

+getMaximum() : int

+getTurnout() : int

+findVotes() : int

PoliticalCampaign

-DOLLARS_PER_SOLICITATION :

 double = 5.00

-TELEPHONE_HOURS_PER_CALL :

 double = 0.1

-total : Voters

-ourParty : Voters

-independent : Voters

-ourPartyRegulars : Voters

-independentRegulars : Voters

-ourPartyOccasionals : Voters

-others : Voters

-workers : Workers

-budget : double

-calls : int

+PoliticalCampaign()

+gatherData() : void

+evaluateProspects() : void

+budgetMoney() : void

+planTime() : void

