Chapter 9 Projects
1. [after §9.3] Person class *:

Provide a complete program that simulates the creation and display of Person objects. Provide a Person class that contains:

· Two instance variables named first and last that keep track of a person’s first and last names, respectively.

· A class variable named numOfPeople that keeps track of the total number of instantiated Person objects.

· A 0-parameter constructor that initializes the Person object with the name “John Doe.”
· An appropriate 2-parameter constructor.

· Four methods named setFirst, setLast, getNumOfPeople, and printFullName that work in conjunction with this driver method:

public static void main(String[] args)

{

 Person person1 = new Person();

 person1.printFullName();

 Person person2 = new Person("Matt", "Thebo");

 person2.printFullName();

 person1.setFirst("Paul");

 person1.setLast("John");

 person1.printFullName();

 System.out.println("Total number of people = " +

 Person.getNumOfPeople());

} // end main

When the above driver method runs, it should print the following (as always, follow the format precisely):

John Doe

Matt Thebo

Paul John

Total number of people = 2

2. [after §9.4] Homework Scores **:
Provide a complete program that handles the entry and display of homework scores. As part of your program, provide a HwScore class that contains the points earned on a particular homework and also the maximum possible points on that homework. In order to keep track of the overall average, the HwScore class also contains the total points earned on all homework combined and the total possible points on all homework combined. In order to determine letter grades, the HwScore class specifies cutoff values for the A, B, C, and D letter grades.

More specifically, the HwScore class should contain these constants and variables:

· Named constants for the letter grade cutoffs: A = 0.9, B = 0.8, C = 0.7, D = 0.6

· Class variables named totalEarnedPoints and totalPossiblePoints
· Instance variables named earnedPoints and possiblePoints
The HwScore class should contain a two-parameter constructor that handles initializations for the earnedPoints and possiblePoints instance variables.

Implement a printGrade method that prints a particular homework’s earned points, possible points, and letter grade. The letter grade is based on this scale: A (90%, B (80%, C (70%, D (60%, F < 60%.

Implement a class method named printOverallGrade that prints the overall earned points, overall possible points, and overall letter grade.

Use appropriate modifiers for methods. The modifiers we’ve discussed so far are private, public, and static. Use helping methods when appropriate.

Provide a main driver method. It should:

· Instantiate four HwScore objects and store them in the variables hw1, hw2, hw3, and hw4. In the instantiations, initialize the objects to these values:

hw1: 26.5 earned points, 30 possible points

hw2: 29 earned points, 27.5 possible points

hw3: 0 earned points, 20 possible points

hw4: 16 earned points, 20 possible points

· For hw1, hw2, and hw3 (but not hw4), call printGrade.

· Call printOverallGrade.

Output, using the main driver method described above:

On this homework, you earned 26.5 out of 30.0 possible points: B

On this homework, you earned 29.0 out of 27.5 possible points: A

On this homework, you earned 0.0 out of 20.0 possible points: F

On all homework, you earned 71.5 out of 97.5 possible points: C

As always, your program should mimic the output format precisely.

3. [after §9.3] Political Approval Rating ***:

In this project, you will use some important properties of random numbers to assess the results of a poll that ranks the public’s approval of some person or issue. Suppose you asked everyone in the country what they thought of the president’s performance, on a scale of 0% to 100%, where 0% is terrible and 100% is wonderful. If you averaged all the answers, you would get the true average opinion of everyone in the country. We call that the population mean. Unfortunately, asking everyone is expensive, so pollsters just ask a few representative people, perhaps 100.

Even when you take a truly representative sample, the average of what your samples say won’t equal the average of what everyone would say. The measured average will have a variance. Let:

x = a particular sample’s approval value

x = population mean approval value = average approval of everyone = the “truth”
Using bold angled brackets to denote averaging, we define:

variance = <(x – x)2> =

 average of the square of (each sample’s approval – population mean approval).

With a little algebra, one can show that:

<(x – x)2> = (<x2> - <x>2) + (<x> - x)2

The first term on the right-hand side is:

<x2> - <x>2 =

 (average of square of each sample’s approval) – (average sample approval squared)

This is something we can compute from our sample data only.

The second term on the right-hand side is:

(<x> - x)2 = square of (average sample approval – population’s mean approval)
We’ll call this the variance of the average. This helps us estimate the error in our sampling experiment. What we usually want to know is:

standard deviation of the average = sqrt[(<x> - x)2] = Math.abs(<x> - x)

This tells approximately how far off our computed result is. It could be off in either direction by as much as two or three times the standard deviation.

In real life, we almost never know the “true” population mean, x, so we can’t just use Math.abs(<x> ‑ x). Instead, we have to estimate our error indirectly. On the average, it turns out that:

(<x> - x)2 ≈ (<x2> - <x>2) / (samples – 1)

That is, the variance of the average ≈ raw variance / (samples – 1).

Thus, we can estimate the standard deviation of an experimental determination of an average by calculating:

standard deviation of mean ≈ sqrt[(<x2> - <x>2) / (samples – 1)]
We must always take more than one sample, and the more samples we take, the smaller our error becomes, but it decreases only as the square root of the number of samples.

Here’s a suggested UML class diagram:

[image: image7.emf]-600

-400

-200

0

200

400

600

-600 -400 -200 0 200 400 600

The main method calls verifyModel to prove that the getSample algorithm is OK. Then it calls setPopulationMean to set the population mean approval at an unknown random value between 0.0 and 1.0. Then main asks the user for a desired number of samples, and it instantiates an Approval object, poll. Then it asks poll to call doPoll and prints poll’s mean value, as a percentage. It gets poll’s raw variance and divides it by (samples – 1) to obtain an estimate of the variance of the measured average, relative to the underlying true population mean. It prints the standard deviation of variation in the measured average, as a percentage. Finally, it reveals the “true” underlying population mean, as a percentage, for comparison.

The doPoll method loops for the specified number of samples, accumulating value and value squared. After the looping, it divides each accumulation by the specified number of samples to obtain the respective averages. Then it sets mean, and:

variance ← avgOfValueSquared – avgValue * avgValue.

The setPopulationMean method just makes populationMean equal to whatever value is returned by Math.random.

The getSample method implements the following algorithm, which provides a simple representation of the population’s distribution of approval values:
sample ← Math.random

where ← Math.random

if where < populationMean

 sample ← populationMean + (1 – populationMean) * sample
else

 sample ← populationMean – populationMean * sample

The verifyModel method establishes an independent population mean, and loops through one million samples, to confirm that the average of all of them approximately equals the established population mean, and to confirm that all samples are within the allowed range.

3. Write a Java program that uses the above methods to produce something like the following results:

Sample session:

populationMean = 0.588476003095624 for 1000000 samples

maxValue = 0.9999997135618746

minValue = 9.054368410588154E-7

avgValue = 0.588630443979852

Enter number of samples in poll: 50
poll's average = 52%

standard deviation of poll's average = 4%

population average = 49%

3. Write another driver for the Approval class that conducts a large number of polls and verifies experimentally the relationship:

 (<x> - x)2 ≈ (<x2> - <x>2) / (samples – 1)

for arbitrary user-specification of number of samples.

Do this by looping through a user-specified number of iterations. In each iteration, take a separate poll, and accumulate raw variance (right-side numerator) and the square of that poll’s mean minus population mean (left side). After the loop, divide each accumulation by the number of iterations, and divide the quotients to produce an average estimate of (samples - 1).

Sample session:

PopulationMean = 0.6785929035920892

Enter number of polls: 100000
Enter number of samples per poll: 100
samplesMinusOne = 98.93854576326652
4. [after §9.4] Solar Input for HVAC and Solar Collectors ***:

In this project, you will write a program that keeps track of where the sun is and determines how much solar energy penetrates a glass window of any orientation, at any place and time.

When designing or analyzing a building or flat-plat thermal or photovoltaic solar collector, you need to know exactly where the sun is in the sky and the current solar intensity (power flow per unit area). (Intensity = Watts/m2 = 3.15 * BTU/hr/ft2). In a building, there are typically several different glass surfaces (windows) having different orientations, different areas, and different transmission coefficients. Each of these surfaces is logically a separate object in a building composed of many objects. In a solar collector, there may be only one object ─ a surface either pointing south and tipped at some fixed angle or moveable and continuously adjusted to track the sun. The sun is the same for all, so its properties are logically class variables, but it appears to move across the sky, so these class properties change in time. The following UML class diagram represents the static sun and the non-static solar-collector or window objects:

[image: image2]
The main method is straightforward. In our example, to establish latitude, longitude, and (Central) time zone, it makes the call:

Solar.setPlace(40, 95, 'C');

To establish date and time at 0900, January 21, 2004, it makes the call:

Solar.setTime(2004, 0, 21, 9, 00);
Then, it prints out the sun’s altitude and azmuth and the (clear-day) direct normal solar radiation in BTU/hr/sqft. Then, it instantiates an object called glass and passes it the arguments, (60.0, 0.0, 100.0, 0.90, 0.20) to represent a 100-sqft, south-facing, 60-tilt solar collector, with a glass transmission factor of 0.9 and a reflection factor of 0.2 for the ground in front of the collector. Then, it calls getIncidenceAngle to display the angle between the sun’s rays and a perpendicular to the collector surface, and it calls getTransmitted to display the total solar power that gets through the glass.

Output:

altitude degrees= 13

azmuth degrees= -50

direct normal BTU/hr/sqft= 205

incidenceAngle= 49

transmitted BTU/hr= 12653

In the Solar class, all the angular variables except yearPhase are in degrees, but the trigonometric methods in the Math class use parameters that are in radians, so we provide the conversion multiplier, RAD, to convert each degree-variable into radians whenever one of algorithms below supplies it as an argument to one of Math’s methods. timeZone uses the characters, A, E, C, M, P, Y, and H to identify Atlantic Standard Time, Eastern Standard Time, and so on, across North America to the Yukon and Hawaii. yearPhase represents one year in radians from 0 to 2π. altitude is the sun’s height in degrees above the horizon. azmuth is the sun’s angular position relative to south, and increasing clockwise; that is, west of south is positive and east of south is negative. tilt is the angle between the sheet of glass and horizontal; that is, horizontal glass has tilt = 0, and vertical glass (like an ordinary window) has tilt = 90.0. When tilt > 0, the direction of the lower side is given by normalAzmuth, using the same scheme as for azmuth, above. area is in square feet. transmission is the fraction of normal-incident (perpendicular to the glass) solar power that gets through the glass. Higher groundReflection scatters extra light into the glass. incidenceAngle is the angle between the sun’s rays and a perpendicular to the glass’s surface.

The setPlace method copies its parameter values into corresponding class variables.

The setTime method initializes the calendar object with the statement:

calendar.set(year, month, monthDay, hour, minute);

Then it calls calendar.get(Calendar.DAY_OF_YEAR) to get the initialized date as an integer value between 1 and 365 or 366. Next it multiplies by 2π/365.25 to obtain yearPhase. Then it calculates the declination, the angle by which the earth’s north pole tips toward the sun, using the formula:

declination ← 0.28 – 23.19 * cos(yearPhase + 0.153)
getSolarTime returns minutes after solar noon. Finally, it uses declination and 0.25 * solarTime as arguments in calls to the setAltitude and setAzmuth methods to establish these important solar attributes.

The solarTime method computes:

MinutesAfterNoon ← 60 * hour + (minute – 60 * 12)
It computes a time correction with the algorithm:

correction ← 0.008 + 7.669 * cos(yearPhase + 1.533) –

 9.714 * cos(2 * yearPhase – 1.245)

Then it establishes a standardLongitude with the timeZone designator, like this:

timeZone: A E C M P Y H

standardLongitude: 60 75 90 105 120 135 150

Finally, it returns the value:
minutesAfterNoon + correction +
 4 * (standardLongitude – longitude)
The setAltitude method uses the algorithm:

sinAltitude ← cos(latitude * cos(declination) *

 cos(hourAngle) + sin(latitude) * sin(declination)

[Don’t forget to include the RAD multiplier in these sine and cosine arguments!]
Then it sets the altitude with the statement:

altitude = Math.asin(sinAltitude) / RAD;
The setAzmuth method uses the algorithm:

cosAzmuth ← [sin(altitude) * sin(latitude) –

 sin(declination)] / [cos(altitude) * cos(latitude)]

Next it computes: sign ← hourAngle/abs(hourAngle). Then it sets the latitude with the statement:

azmuth = sign * Math.acos(cosAzmuth) / RAD;

The getDirectNormal method uses a fit to data in the 1985 ASHRAE Guide in the formulas:

A ← 361.367 + 25.177 * cos(yearPhase – 0.0862)

B ← 0.1716 – 0.03466 * cos(yearPhase – 0.1406)

Then, if altitude > 0, it returns BTU/hr/sqft with: A*exp[-B/sin(altitude)]

The object constructor copies the five parameter values into their respective class variables. Then it calls setIncidenceAngle, which implements the geometric algorithm:

cos(incidence) ← cos(altitude) * cos(azmuth – normalAzmuth) *

 sin(tilt) + sin(altitude) * cos(tilt)

As long as incidenceAngle < 90 degrees, the getDirect method returns:

area * directNormal * cos(incidenceAngle)

Otherwise, it returns zero, because the surface is in its own shade.

The getDiffuse method fits data in the ASHRAE Guide with the formula:

C ← 0.09033 – 0.04104 * cos(yearPhase -0.10)

Then it implements the algorithm:
fss ← cos(tilt) // fss = surface-sky coupling factor

fsg ← 1 – fss // fsg = surface-ground coupling factor

Y ← 0.45

cosI ← cos(incidenceAngle)

if cosI > -0.2

 Y ← 0.55 + 0.437*cosI + 0.313*cosI*cosI
diffuseSky ← fss*getDirectNormal*C

diffuseGround ← fsg*getDirectNormal*

 {C*Y + 0.5*groundReflection*[C + sin(altitude)]}

And it returns: area * (diffuseSky + diffuseGround)
The getTransmitted method describes the fact that light transmission decreases dramatically as the incidenceAngle becomes larger than about 60 degrees. Let:

cos ← cos(incidenceAngle)
Then, use this formula for the value returned:
transmitted ← (transmission/0.87917)*2.71235*cosI*(1

 –0.22881*cosI*(1 + 11.39714*cosI*(1 – 1.37983*cosI*(1

 –0.39951*cosI))))*getDirect + 0.9189*transmission*getDiffuse

The move method is not exercised by the driver, but it’s easy to implement, and it provides the capability to move a solar collector to track the sun wherever it is. The move method is just an abbreviated version of the constructor. It does not create a new object. It simply updates the tilt and normalAzmuth instance variables and then calls the setIncidenceAngle method.
5. [after §9.6] Net Present Value Calculation **:

When financial planners try to determine whether a prospective new investment is a good one, traditionally they perform a net present value calculation. Here’s how it works:

First, you establish state variables – the present year and what is called a “discount rate.” The discount rate is the “risk-adjusted cost of capital.” It’s equal to the interest rate you would have to pay a knowledgeable banker to finance a project like the one you have in mind. If it’s a perfectly safe project, the discount rate is equal to the interest you’d pay to finance purchase of something like three-year U. S. Treasury Bills. If it’s a risky project, it’s the interest you’d have to pay to finance purchase of something like “junk bonds.”

Next, you make a schedule of the expected “cash flows” for the project. If you receive money in a particular transaction, the cash flow is positive. If you spend money, the cash flow is negative. The idea is to “discount” each future transaction in accordance with how far it is in the future and your selected discount rate, using this algorithm:

years ← (year of future event) – (present year)

presentValue ← futureCashFlow * (1 + 0.01 * discountRate)-years
The minus sign on the years exponent makes the magnitude of the present value less than the magnitude of the future cash flow.

The algebraic sum of the present values of all of the cash flows is the “net present value.” If the net present value is positive, it’s a good investment. If the net present value is negative, it’s a bad investment.

Organize your program to conform to the following UML class diagram:

[image: image3]

Notice that we are asking you to write the FinancialEvaluation class with a combination of instance and class members. Make PROJECT_DESCRIPTION and discountRate be instance members because they should be distinct for each project, but make presentYear be a class variable because it should apply to all projects in a given year. Provide a constructor to instantiate a separate FinancialEvaluation object for each investment opportunity in the given year.

The getNetPresentValue method could be either an instance method or a class method, but since this chapter is about class methods, we’re asking you to make it a (utility) class method, with object data provided through a parameter. Within the getNetPresentValue method, provide a do loop which loops through all of the scheduled cash-flow events in a given project (negative initial investment and positive subsequent returns). Instantiate a separate CashFlow object for each event, and accumulate the values returned by calls to the getPresentValue method. In the getPresentValue method in the CashFlow class, ask the user to provide the year of the event and the cash flow value for that event (positive for income or negative for expenditure). Then use the above algorithm to calculate the present value of that particular event, and return that present value.

Make your program so that it produces results like these:

Sample session:

Enter present year: 2006
Enter project description: Sure Bet
Enter discount rate as percent: 4.0
Enter year of cash flow: 2006
Enter value of cash income: -1000
More? (Enter 'y' or 'n') y
Enter year of cash flow: 2007
Enter value of cash income: +600
More? (Enter 'y' or 'n') y
Enter year of cash flow: 2008
Enter value of cash income: +600
More? (Enter 'y' or 'n') n
Enter project description: Long Shot
Enter discount rate as percent: 20.0
Enter year of cash flow: 2006
Enter value of cash income: -1000
More? (Enter 'y' or 'n') y
Enter year of cash flow: 2010
Enter value of cash income: +2000
More? (Enter 'y' or 'n') n
2006 project Sure Bet net present value = $131.66

2006 project Long Shot net present value = $-35.49

6. [after §9.7] Three-Body Problem ***:

Two bodies in free space attracted to each other by gravity move in regular elliptical paths, but if one or more additional bodies are added to the system, the motion becomes chaotic. The left figure below shows an approximation of the moon orbiting the earth. The right figure shows what might happen if a second moon also orbited the earth, initially at a distance about 70% of our present moon’s distance. In the right figure, the earth is a wobbling black blob near the origin. The path of the original moon is the outer wobbly orbit. The path of the hypothetical additional moon is the inner wobbly orbit. The scales are thousands of kilometers.

[image: image4]
Your task is to write a Java program to model this three-body problem, using techniques described in this chapter. Here is a suggested UML class diagram:

[image: image5]
The driver instantiates three bodies, with the following initial conditions:

Body A = earth:

mass = 6.0e24 kg; x = 0.0 meters; y = -4.5e6 meters; vx meters/sec = 12.0 meters/sec;
vy = -14.0 meters/sec

Body B = moon:

mass = 7.4e22 kg; x = 0.0 meters; y = 3.84e8 meters; vx = -1005.0 meters/sec;
vy = 0.0 meters/sec

Body C = another moon:

mass = 7.4e22 kg; x = 2.7e8 meters; y = 0.0 meters; vx = 0.0 meters/sec;
vy = 1180.0 meters/sec

The driver queries the user for time increment per step, total number of steps, and an output scale factor. Then, it loops for the input number of steps and calls the ThreeBody.go and ThreeBody.print methods in each iteration.

The Body class describes typical celestial bodies. It declares instance variables for mass, two positions, and two velocities. It also declares a reference variable for an associated ThreeBody object that will tell it how to change its position in the next time increment. This class defines a constructor that sets initial values for mass, position, and velocity. The constructor also instantiates a ThreeBody.drive object and initializes the two velocity components in the subordinate drive object at values equal to the body’s velocity component values. The setEqual method makes each instance variable in the calling object be equal to the corresponding instance variable in the called object. Assuming dX, dY, dVx, and dVy are per-unit-time changes in changes x and y positions and velocities, respectively, the Body.go method implements the following algorithm:

dX ← timeIncr * drive.velocityX

dY ← timeIncr * drive.velocityY
dVx ← timeIncr * drive.accelerationX

dVy ← timeIncr * drive.accelerationY
Then, it returns a new instance of body with the original mass, but with:

x ← x + dX, y ← y + dY, vx ← vx + dVx, and vy ← vy + dVy.

The ThreeBody class manages the overall system of three bodies, and it provides subordinate ThreeBody.drive objects to individual bodies to provide them with the data they need to know how to go from their present states to their next states. The autonomous drive information, body velocity, is easy, and the individual bodies provide this drive information themselves. The difficult part of each body’s drive information is the acceleration produced by the other two bodies’ gravitational fields. The private ThreeBody.setAcceleration method sets these values. After zeroing both accelerations, it uses the following algorithm for each other body:

if otherBodyA is not null

 rA ← sqrt((xA – x)2 + (yA – y)2)

 accelerationX ← accelerationX + G * massA * ((xA – x)/rA) / rA2

 accelerationY ← accelerationY + G * massA * ((yA – y)/rA) / rA2
The named constant, G, is the universal gravitational constant, massA is the mass of one of the other bodies, xA and yA are that body’s positions, and x and y are this body’s positions.

The static ThreeBody.go method takes as parameters references to each of the three body objects and a time increment. The easiest way to implement this method is to use current velocity and gravitational attraction to determine how to step forward. To implement this simple algorithm, use the following code for each body:
if (bodyA != null)

{

 bodyA.getDrive().setAcceleration(bodyA, bodyB, bodyC);

 bodyA.setEqual(bodyA.go(timeIncr));

}
This is simple, but you need extremely small time increments (of the order of two minutes each) to get a good result. On the other hand, if you use a step-with-midpoint algorithm, you get a comparable result using one-hour time increments We have organized the classes so that it’s fairly easy to implement the much better step-with-midpoint algorithm ─ all you have to do is modify the ThreeBody.go method and implement it like this:

Inside ThreeBody.go, declare three additional Body reference variables, bodyAm, bodyBm, and bodyCm, to represent the states of the bodies at the midpoints. Then, for each body use this code:

if (bodyA != null)

{

 bodyA.getDrive().setAcceleration(bodyA, bodyB, bodyC);

 bodyAm = bodyA.go(0.5 * timeIncr);

}

After doing this for each body, go through all bodies again, using the following code:

if (bodyA != null && bodyAm != null)

{

 bodyAm.getDrive().setAcceleration(bodyAm, bodyBm, bodyCm);

 bodyA.setDrive(bodyAm.getDrive());

 bodyA.setEqual(bodyA.go(timeIncr));

}

This simple change improves the efficiency of your calculation by two orders of magnitude.

On each line of output, print total time in hours followed by x and y positions of earth, actual moon and hypothetical moon. Divide all distances by one million and use Math.round to eliminate fractions in the output only.

Sample session:

Enter time increment in sec (3600?): 3600
Enter number of steps (1500?): 10
Enter scale factor (1.e-6?): 1e-6
1 0.0 -5.0 -4.0 384.0 270.0 4.0

2 0.0 -5.0 -7.0 384.0 270.0 8.0

3 0.0 -5.0 -11.0 384.0 270.0 13.0

4 0.0 -5.0 -14.0 384.0 269.0 17.0

5 0.0 -5.0 -18.0 384.0 269.0 21.0

6 0.0 -5.0 -22.0 383.0 269.0 25.0

7 0.0 -5.0 -25.0 383.0 268.0 30.0

8 0.0 -5.0 -29.0 383.0 268.0 34.0

9 0.0 -5.0 -33.0 383.0 267.0 38.0

10 0.0 -5.0 -36.0 382.0 266.0 42.0

For the plot on the right in the figure above, we used 6000 steps, copied into Microsoft Excel, and plotted.

ApprovalDriver

+main(args : String[]) : void

Approval

-populationMean : double

-mean : double

-variance : double

+doPoll(samples : int) : void

+getMean() : double

+getVariance() : double

+setPopulationMean() : void

+getPopulationMean() : double

+getSample : double

+verifyModel() : void

-RAD : double = Math.PI / 180

-latitude : double

-longitude : double

-timeZone : char

-yearPhase : double

-altitude : double

-azmuth : double

-calendar : Calendar = Calendar.getInstance()

-tilt : double

-normalAzmuth : double

-area : double

-transmission : double = 0.88

-groundReflection : double = 0.2

-incidenceAngle : double

+Solar(tilt : double, normalAzmuth : double, sqft : double,

 transmission : double, groundReflection : double)

+move(tilt : double, azmuth : double) : void

+setIncidenceAngle() : void

+getIncidenceAngle() : void

+getDirect() : double

+getDiffuse() : double

+getTransmitted() : double

+setPlace() : void

+setTime() : void

+getAltitude() : double

+getAzmuth() : double

+getDirectNormal() : double

-getSolarTime(hour : int, minute : int) : double

-setAltitude(declination : double, hourAngle : double) : void

-setAzmuth(declination : double, hourAngle : double) : void

Solar

SolarDriver

+main(args : String[]) : void

FinancialEvaluation

-presentYear : int

-PROJECT_DESCRIPTION : String

-discountRate : double

+FinancialEvaluation(description : String, rate : double)

+getDiscountRate() : double

+setPresentYear(year : int) : void

+getPresentYear() : int

+getNetPresentValue(project : FinancialEvaluation) : double

CashFlow

-year : int

-cashFlow : double

+getPresentValue(project : FinancialEvaluation) : double

FinancialEvaluationDriver

+main(args : String[]) : void

ThreeBody

+G : double = 6.673E-11

-scale : double

-velocityX : double

-velocityY : double

-accelerationX : double

-accelerationY : double

+setScale(scale : double) : void

+getVelocityX() : double

+getVelocityY() : double

+getAccelerationX() : double

+getAccelerationY() : double

+setVelocityX(velocityX : double) : void

+setVelocityY(velocity : double) : void

-setAccelerations(driven : Body,

 otherA : Body, otherB : Body) : void

+go(bodyA : Body, bodyB : Body,

 bodyC : Body, timeIncr : double) : void

+print(bodyA : Body, bodyB : Body,

 bodyC : Body, time : double) : void

Body

-mass : double = 0.0

-x : double = 0.0

-y : double = 0.0

-vx : double = 0.0

-vy : double = 0.0

-drive : ThreeBody

+Body(mass : double, x : double,

 y : double, vx : double, vy : double)

+getX() : double

+getY() : double

+getVx() : double

+getVy() : double

+getMass() : double

+getDrive() : ThreeBody

+setDrive(drive : ThreeBody) : void

+setEqual(otherBody : Body) : void

+go(timeIncr : double) : Body

ThreeBodyDriver

+main(args : String[]) : void

[image: image1][image: image6.emf]-600

-400

-200

0

200

400

600

-600 -400 -200 0 200 400 600

