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1. Proof Techniques
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The essential quality of a proof
is to compel belief.

Pierre de Fermat,
1601 — 1665

Reading

Sections 2.1 — 2.7 of Campbell
Sections 4.1 — 4.3, 4.7 of Epp
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1.1.1. Notation

We begin our study of proofs by recalling the following notations:

R: the set of all real numbers
Z: the set of all integers
Q: the set of all rational numbers

Examples of real numbers: -1, π, 17,
√

2
Examples of integers: -3263, 0,

√
9, 232

Examples of rationals: −2110 , 1
2 , 5, 9.99̄

And, as is well-known, all integers are rationals, and all rationals
are reals.
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Additional notations:

∃ : There exists ...
∃! : There exists a unique ...
∀ : For all ...
∈ : Member of (a set) ...
3 : such that

Examples:
∃x ∈ Z 3 x2 = 4

There exists an integer x such that x2 = 4.

∀y ∈ R, ∃!z ∈ R 3 y + z = 0

For all real numbers y , there is a unique real z such that y + z = 0.
or

Every real number y has exactly one real z such that y + z = 0.
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We will also assume, without proof, the usual properties of
numbers. For example:

• Closure: integers are closed under addition and multiplication,
i.e. ∀x , y ∈ Z, x + y ∈ Z and xy ∈ Z.
For all real numbers a, b and c ,

• Commutativity: a + b = b + a and ab = ba

• Distributivity: a(b + c) = ab + ac and (b + c)a = ba + ca

• Trichotomy: exactly one of the following is true:
a < b, or b < a, or a = b

See Appendix A of Epp’s textbook for all the properties.
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1.1.2. Number Theory

Let’s learn some Number Theory.

Definition 1.1.1 (Colorful)

An integer n is said to be colorful if there exists some integer k
such that n = 3k .

This terminology colorful is non-standard; used only in this class.

Questions:

• Is 1353 colorful?

• What about (208− 201)?

• 0?
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Answer

• Yes, 1353 is colorful because 1353 = 3× 451.

• No, because 208− 201 = 7, and there is no integer k such
that 7 = 3k . (See Example 7: Proposition 1.6.2)

• Yes, 0 is colorful because 0 = 3× 0.
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1.2. Proof by Construction

Existence Proof 1

Prove the following:

∃x ∈ Z 3 x > 2 and x2 − 5x + 6 > 0.

That is, there exists an integer x such that x > 2 and
x2 − 5x + 6 > 0.
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Proof:

1. Let x = 17.

2. Note that 17 ∈ Z and 17 > 2.

3. Also, x2 − 5x + 6 = 172 + 5(17) + 6 = 210 > 0.

QED1

• A proof is a concise, polished argument explaining the validity
of a statement to a skeptic (usually, you).

• Concise means there are no irrelevant details. It also means to
use few words.

• Polished means it should be the final draft, i.e. you need to
revise it to make it understandable, like writing an essay.

• Argument means every step should follow logically from all
previous steps.

1quot erat demonstrandum — that which was to be demonstrated.
9 / 46



Introduction by Construction if-then for-all by Contraposition by Contradiction Summary

• A proof is not an attempt to determine whether or not
something is true. That is your scratch work. You should be
convinced the statement is true before you write your proof.

• In the proof above, there is no need to explain how 17 was
obtained. You just need to show that 17 has the said
properties. Of course, many integers satisfy the same
properties (as you can easily verify), and any one of these will
suffice for the proof.

• This style of proof — where you explicitly find the value with
the correct properties — is called a proof by construction. It
is the most direct way to prove that something exists.

• Sometimes, finding the right thing takes some cleverness, as
the next example shows.
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Existence Proof 2

Prove that there exist irrational numbers p and q such pq is
rational.

Recall that a number x is rational if it can be written as a ratio of
two integers: x = a

b , where a, b ∈ Z and b 6= 0.

Examples: 3
6 , 2, −1.5.

A number that is not rational is irrational.
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Proof:

1. We know from Theorem 4.7.1 (Epp) that
√

2 is irrational.

2. Consider
√

2
√
2
: it is either rational or irrational.

3. Case 1:
√

2
√
2

is rational.

3.1 Let p = q =
√

2, and we are done.

4. Case 2:
√

2
√
2

is irrational.

4.1 Then let p =
√

2
√
2
, and q =

√
2.

4.2 p is irrational (by assumption), so is q (by Theorem 4.7.1
(Epp))

4.3 Consider pq = (
√

2
√
2
)
√
2

4.4 = (
√

2)
√
2×
√
2, by the power law.

4.5 = (
√

2)2 = 2, by algebra.
4.6 Clearly 2 is rational.

5. In either case, we have found the required p and q.�
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1.2.3. Disproof

• To disprove a statement, you are arguing why the statement is
not true.

• You may use the same type of argument as in a proof. But
sometimes, it is easier just to show a counterexample.

Example

Disprove this statement:
∀x , y ∈ Z+,

√
x + y =

√
x +
√
y .

In other words, for all positive integers x and y ,√
x + y =

√
x +
√
y .

Z+ denotes the set of positive integers, i.e. {1, 2, 3, . . .}.
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Disproof

1. Let x = y = 2. Clearly, they are positive integers.

2. Then
√
x + y =

√
2 + 2 = 2,

3. But,
√
x +
√
y = 2

√
2 = 2.828427...

4. Thus
√
x + y 6=

√
x +
√
y , and the statement is false.

Disproof by counterexample is particularly useful for statements
involving ∀.
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Quiz: you try

If the following statement is true, prove it, otherwise give a
counterexample:

The square of an irrational number is irrational.
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1.2.4. Jigsaw Analogy

• Doing a proof is like solving a jigsaw puzzle2. No two jigsaws
are alike; no two proofs are alike.

• Sometimes you solve large chunks quickly; other times you get
stuck. You don’t have to solve from top to bottom.

• Some strategies are useful eg. fixing the border of the puzzle
first. Likewise, there are useful strategies for proofs.

2Adapted from D. Velleman, How to Prove It, 2nd Edition, 2006.
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1.3. if-then statements

Many statements to be proven take the form:

if P then Q

One strategy is to use a direct proof: assume P is true, then
combine this with other known facts F and theorems T to
conclude that Q must be true.

Think of P as the starting point, and Q the destination. The other
known facts F and theorems T make up the route that go from P
to Q. Each step of the route must be logically connected.

In your draft, you can work forwards from P, or backwards from Q,
but be careful never to assume Q to be true.

In your final, polished proof, you must argue only forwards, not
backwards.
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Example

Prove that:
if x , y are colorful integers, then so is x + 2y .

Identify P and Q to be:

P : x , y are colorful integers

Q : x + 2y is colorful

We can immediately write down the start and end of the proof, as
follows:

Draft proof:

1. Assume that x , y are colorful integers.

2. . . .

3. And thus x + 2y is colorful. QED.
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The next logical thing is to use the definition of colorful.

Draft proof:

1. Assume that x , y are colorful integers.

2. Then by definition of colorful, ∃a, b ∈ Z such that x = 3a
and y = 3b.

3. . . .

4. So ∃c ∈ Z such that x + 2y = 3c.

5. And thus x + 2y is colorful, by definition of colorful. QED.
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This means we need to connect c to a and b. Obviously, we should
try writing (x + 2y) in terms of a, b:

x + 2y = 3a + 2(3b), by substitution

= 3a + (2 · 3)b, by associativity

= 3a + (3 · 2)b, by commutativity

= 3a + 3(2b), by associativity

= 3(a + 2b), by distributivity

Aha! It is clear what c should be now. So here’s our final proof:
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Proof.

1. Assume that x , y are colorful integers.

2. Then by definition of colorful, ∃a, b ∈ Z such that x = 3a
and y = 3b.

3. Now, x + 2y = 3a + 2(3b), by substitution

4. = 3a + 3(2b), by commutativity and associativity

5. = 3(a + 2b), by distributivity

6. Let c = a + 2b. Note that a + 2b ∈ Z because integers
are closed under addition and multiplication.

7. So ∃c ∈ Z such that x + 2y = 3c.

8. And thus x + 2y is colorful, by definition of colorful.�

Note that every step is justified by appealing to definitions or to
known properties of integers.
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1.3.2. Divisibility

Definition 1.3.1 (Divisibility)

e.g. Clearly 3 | 6 (3 divides 6), but 4 - 11 (4 does not divide 11).

22 / 46



Introduction by Construction if-then for-all by Contraposition by Contradiction Summary

More examples

• For integers a, b, c , it is clear that if a | b and a | c , then
a | (b + c). Reason: if a is a factor of b and c , then it is a
factor of the sum.
Trivial example: 2 | 6 and 2 | 8. Also, 2 | (6 + 8).

• But the inverse is not true. That is, if a - b and a - c , then it
is still possible to have a | (b + c).
Trivial example: 3 - 10 and 3 - 14, but 3 | (10 + 14).

• Finally, it should be obvious that a | ab, for any b.

Warning!

Do NOT use division. There is no concept of division in Number
Theory. The notation a | b simply means a is a factor of b. No
actual division is performed.
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Theorem 4.3.1 (Epp)

∀a, b ∈ Z+, if a | b then a ≤ b.

That is, when dealing with positive integers, a divisor of a number
cannot be larger than the number.

Note that the theorem is silent for the case b = 0, because 0 is not
positive.
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When doing proofs, it is often helpful to keep track of what we are
given and what our goals are. Since the statement to be proven is
an if-then statement, we can quickly write the P as our givens and
the Q as our goal.

Givens
a, b ∈ Z+

a | b

Goals
a ≤ b
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From the definition of a | b, we know that b = ak for some integer
k . We may add this to our givens.

Givens
a, b ∈ Z+

a | b
b = ak, for some k ∈ Z

Goals
a ≤ b

• So we now have one equality in our givens, but our goal
involves an inequality. How do we achieve this?

• Intuitively, the equality says that if a needs to be multiplied by
something to get b, then b must be larger than a. But this
requires k to be positive. Fortunately, rule T25 of Appendix A
(Epp) assures this.
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• So what we want is to argue that since ak = b and k is
positive, we may “drop” k to get a ≤ b. Although this is
intuitively true, none of the rules in Appendix A (Epp)
justifies this argument. We need another approach.

• Since k is a positive integer, we have the inequality 1 ≤ k for
“free”, which we can add to our givens. We can now invoke
rule T20 to multiply both sides of this inequality by a (which
is positive), to get a ≤ ak. The right hand side is now b,
which is our goal. Hence our proof:
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Proof.

1. Assume a, b ∈ Z+, and a | b.

2. So by definition of divisibility, b = ak for some k ∈ Z.

3. Since a, b > 0, and b = ak, we deduce k is positive by
rule T25 of Appendix A (Epp).

4. Thus 1 ≤ k .

5. Using rule T20, multiply the inequality by a to get
a ≤ ak = b �.
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Consider the statement:

Proposition 1.3.2 (Linear Combination)

∀a, b, c ∈ Z, if a | b and a | c, then ∀x , y ∈ Z, a | (bx + cy)

That is, if a divides both b and c, then it also divides (bx + cy), for any
integers x , y .

The following is an attempted disproof of the statement. Let’s play detective
and determine if it is right or wrong.

Proposed Disproof

1. Let a = 12, b = 4, c = 3.

2. We know that 12 | 4 and 12 | 3.
3. Let x = 1, y = 5. Then bx + cy = 4 · 1 + 3 · 5 = 19.

4. Clearly, 12 - 19.
5. Therefore, ∃x , y ∈ Z such that a - (bx + cy).

6. Therefore, the statement is not true.
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Now consider this proposed proof. Is it right or wrong?

Proposed Proof

1. Assume a | b and a | c for integers a, b, c .

2. So am = b and an = c , for some m, n.

3. Then bx + cy = amx + any = a(mx + ny).

4. Therefore, a | (bx + cy). QED

30 / 46



Introduction by Construction if-then for-all by Contraposition by Contradiction Summary

Consider yet another proposed proof. Is it right or wrong?

Proposed Proof

1. Suppose a | b and a | c .

2. Then ax = b and ay = c for any integers x and y .

3. Then bx + cy = (ax)x + (ay)y = a(xx + yy).

4. Since x and y are any integers and the integers are
closed under addition and multiplication, we know that

(xx + yy) ∈ Z.

5. Thus a | (bx + cy). QED.
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1.4. for-all statements

∀x P(x)

The strategy for proving such statements is to prove from the particular
to the general. That is, take x to be a particular, but arbitrarily chosen,
value. Prove that P(x) is true. Conclude that since P(x) is true for this
particular x (which has no other special properties), it must be true for
all x .

An analogy: suppose you are asked to prove the statement “All CS
students take CS1231”. You pick one CS student (say, the third person
you happen to meet in COM1), and proceed to argue that since this
person by his/her own admission is a CS student, then he/she must fulfill
all CS graduation requirements. And since these requirements explicitly
state that CS1231 is a core module, then he/she either has taken
CS1231, or will take CS1231. Furthermore, since this person was chosen
arbitrarily, what is true of him/her must be true of all CS students.
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Theorem 4.3.3 (Epp) Transitivity of Divisibility

∀a, b, c ∈ Z , if a | b and b | c then a | c.

Proof.

1. Take any three integers a, b, c .

2. Assume that a | b and b | c .

3. Then by definition of divisibility, we know that b = ar
and c = bs, for some r , s ∈ Z

4. Thus, c = (ar)s = a(rs), by basic algebra

5. Now, rs is an integer, by closure of integers

6. ∴ a | c , by definition of divisibility

7. Since a, b, c was chosen arbitrarily, the statement is true for
all integers. �
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Remarks:

• For Line 1, if instead we had said: “Take positive integers
a, b, c”, then the proof would still be valid until Line 6. But in
Line 7, we would not be able to generalize to all integers,
because our proof thus far was valid only for positive integers.

• Likewise, we cannot assume a ≤ b or b ≤ c or a ≤ c , since
this is an unnecessary restriction.3

• Another common mistake is to say, in Line 3: b = ar and
c = br . This forces b and c to be the same multiple, which
again restricts our proof.

• We will usually omit Line 7, since it is understood.

3We can’t use Theorem 4.3.1 (Epp) to conclude that a ≤ b because a or b
could be negative, and the theorem requires both a, b to be positive.
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1.5. Proof by Contraposition

The contrapositive of the statement:
if P then Q

is the statement:
if ∼ Q then ∼ P

Note that ∼ P means not P, the negation of P. If P is True, then
∼ P is False, and vice versa.

Both statements are logically equivalent; that is, they are True and
False for exactly the same truth values of P and Q.

Thus, instead of proving an if-then statement directly, we may
prove it indirectly by proving its contrapositive.
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Prove the following by Contraposition:
if x2 is irrational then x is irrational

Proof.

Contrapositive form: if x is rational then x2 is rational

1. Assume x is rational.

2. Then by definition of rationals, there exist integers a, b
such that b 6= 0 and x = a

b .

3. So x2 = a·a
b·b , by basic algebra

4. Both numerator and denominator are integers, by the
closure property of integers.

5. Moreover, by rule T21 of Appendix A (Epp), b2 6= 0.

6. Thus, x2 is a ratio of two integers with a nonzero
denominator.

7. Thus, by definition of rationals, x2 is rational. �
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Remarks:

• To prove the statement directly, you would have to start by
assuming x2 is irrational. That is, x2 6= a

b for all integer a and
nonzero integer b.

The unequality 6= makes it difficult to continue. What form
can you let x2 take? Irrationality is defined by the absence,
rather than the presence, of a form. If you cannot write down
a form for x2, then you cannot manipulate it to get a form for
x . The proof cannot proceed.

• By using the contrapositive, you instead deal with rationals,
rather than irrationals. You can thus exploit the form of
rationals in your proof.

• Thus, whenever you encounter an if-then statement involving
the absence of a form, you should consider proving by
contraposition instead.
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1.6. Proof by Contradiction

Reductio ad absurdum is one of a mathematician’s finest weapons.
G.H. Hardy, 1877 — 1947
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Remarks:

• To prove a statement S by contradiction, you first assume
that ∼ S is true. Based on this, you use known facts and
theorems to arrive at a contradiction. Since every step of your
argument thus far is logically correct, the problem must lie in
your assumption. Thus, you conclude that ∼ S is false, and
hence S is true.

• A formal definition of contradiction will be given in the
chapter on logic; for now, it suffices to say that a
contradiction is something that is logically impossible. For
example, at the start of your proof, you may assume (or
deduce) that x ≥ 5. Then later you deduce that x < 5. These
two facts are clearly contradictory.

• In a proof by contradiction, the contradictory facts need not
be directly related to S . As long as you contradict any known
thing in mathematics, eg. 1 = 0, your proof has succeeded.
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Definition 1.6.1 (Even and Odd)

Examples:

328 is even because 328 = 2× 164

91 is odd because 91 = 2× 45 + 1
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Theorem 4.7.1 (Epp) Irrationality of
√

2
√

2 is irrational

As with Example 5, it is difficult to use a direct proof because
irrationality is the absence of a form.

On the other hand, proving by contradiction begins by assuming
that

√
2 is rational, thereby allowing us to exploit the form of a

rational number. The resulting proof is a mathematical classic.
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Proof by contradiction

1. Assume that
√

2 is rational.

2. Then by definition of rationals, there exists integers m, n,
with n 6= 0, such that

√
2 = m

n .

3. Further, we require that m
n be reduced to its

lowest terms4, ie. the only common factor of m, n is 1.

4. From Line 2, m2 = 2n2, by basic algebra.

5. So m2 is even, by definition of even, and because n2

is an integer by the closure property.

6. ⇒ m is even, by Proposition 4.6.4 (Epp)

7. ⇒ ∃k ∈ Z 3 m = 2k , by definition of even.

· · ·

4It is always possible to reduce a rational to its lowest terms. We defer
proving this claim.
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proof cont’d

8. Subtituting into Line 4: (2k)2 = 2n2.

9. ⇒ 2k2 = n2, by basic algebra.

10. So n2 is even, by definition of even, and because k2

is an integer by the closure property.

11. ⇒ n is even by Proposition 4.6.4 (Epp).

12. Since m, n are even, this means 2 is their
common factor, contradicting Line 3.

13. Hence
√

2 must be irrational. �
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Proposition 1.6.2

7 is not colorful.

Proof.

[Proof by contradiction]

1. Suppose 7 is colorful.

2. Then, by definition of colorful, 7 = 3k for some integer k .

3. ⇒ 1 = 3(k − 2), by basic algebra.

4. Since k − 2 is an integer by the closure property,
the above means that 3 | 1, by definition of divisibility.

5. Then by Theorem 4.3.1 (Epp), this means 3 ≤ 1.

6. Clearly, this is absurd, so the Proposition is true. �
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Remarks:

• It is wrong to say: “7 is not colorful because 7÷ 3 = 2.333...,
which is not an integer.” There is no concept of division in
Number Theory. Moreover, the definition of colorful does not
use division, but instead uses the existence of an integer.

• It is also wrong to say: “I cannot find an integer k such
7 = 3k , therefore 7 is not colorful.” If you cannot find it, it
doesn’t mean no such integer exists.

• The irrefutable way to prove the non-existence of something is
to show that if it exists, then it will lead to an absurd
conclusion. This is the essence of a proof by contradiction.
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Summary

• Proofs are at the heart of mathematics.

• Proving a statement is like solving a jigsaw puzzle. No two
proofs are alike. Some strategies are useful.

• These lecture notes illustrate strategies for dealing with:
existence proofs, if-then and for-all statements, disproof by
counterexample, proof by contraposition and contradiction.

• For a given proof, which strategy to use will come with
experience. For longer proofs, multiple strategies may be
combined.

• Read Section 4.1 (pages 154 — 158) of the textbook for how
to correctly write a proof, and the common mistakes to avoid.
Use indentation to facilitate reading.

• Two more proof techniques — Induction and Diagonalization
— will be covered in future lectures.
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