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Mathematical Induction

Proofs are to mathematics
what spelling is to poetry.

Mathematical works do consist
of proofs, just as poems do
consist of words.

Vladimir Arnold,
1937 — 2010

Reading

Section 5.2 — 5.4 of Epp.
Section 2.8 — 2.10 of Campbell.
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Mathematical Induction

Suppose I wish to convince you
that I can climb a ladder of n
steps, no matter how large n is.

My strategy is to use two rules:

Rule 1: I can “climb” to Step 0
(the base of the ladder).

Rule 2: If I am on Step k, I know
how to climb to Step
k + 1.

http://geneburnett.blogspot.sg/2012/06/ladder-of-progress.html
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Mathematical Induction

If you give me a ladder of 3 steps,

• First, I use Rule 1 to “climb” to Step 0.

• Then, let k = 0, and I use Rule 2 to climb to Step 1.

• Then, let k = 1, and I use Rule 2 to climb to Step 2.

• Then, let k = 2, and I use Rule 2 to climb to Step 3.

It should be clear how I can use these two
Rules to climb a ladder of n steps, for any
n, no matter how large. I simply use Rule
1 once, then Rule 2 as many times as
needed.

This is the essence of a proof technique
called Mathematical Induction.
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Mathematical Induction

1.7.1. Regular Induction

The Principle of Mathematical Induction is an inference rule concerning a
predicate P(n):

P(0) ←− Base case

∀k ∈ N, P(k)→ P(k + 1) ←− Inductive step

• ∀n ∈ N, P(n) ←− Conclusion

N = {0, 1, 2, 3, 4, 5, . . .} is the set of natural counting numbers.

In English: If we know that P(0) is true, and also that P(k) implies
P(k + 1) for any k, then we can conclude that P(n) is true for all n ∈ N.

This gives us a structure to write an Induction Proof. You are strongly
advised to follow this structure, because otherwise it is easy to introduce
errors into your proof.
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Mathematical Induction

These are the steps:

1. Identify the predicate P(n). A predicate is a statement that
evaluates to true or false. Usually, n ∈ N, but not always.

2. Prove the Base case, also called Basis step, P(0). Note that there
could be more than one Base case.

3. Prove the Inductive step, which is an implication statement
involving universal quantification. The usual rules for proving such
statements apply here, and should have the following steps:

3.1 For any k ∈ N:
3.2 Assume P(k) is true. [Called the Inductive hypothesis.]
3.3 [ Write out the predicate P(k). ]
3.4 [ Consider the problem of size k + 1. Break it down into a

smaller problem of size k . ]
3.5 [ Apply the Inductive hypothesis on the size-k problem. ]
3.6 [ Proceed to show that P(k + 1) is true. ]

4. Write the Conclusion.

6 / 17



Mathematical Induction

1.7.2. Example

Prove that ∀n ∈ N, (4n − 1) is divisible by 3.

Proof: (by Mathematical Induction)

1. For all n ∈ N, let P(n) = (3 | (4n − 1)).

2. Base case: n = 0

3. Clearly, (40 − 1) = 0 = 3 · 0.

4. Thus, P(0) is true.

· · ·
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Mathematical Induction

proof cont’d

5. Inductive step: For any k ∈ N:

6. Assume P(k) is true, ie. 3 | (4k − 1).

7. Consider the k + 1 case:

8. 4k+1 − 1 = 4 · 4k − 1 = 4(4k − 1) + 3, by basic algebra.

9. By the Inductive hypothesis, 3 | (4k − 1).

10. Clearly, 3 | 3.

11. So by Theorem 4.1.1, 3 | (4(4k − 1) + 3).

12. Thus, P(k + 1) is true.

13. So by Mathematical Induction, the statement is true. �
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Mathematical Induction

Remarks

• In Line 1, note that we need to qualify the domain of n, by saying
“For all n ∈ N”. But this is outside the definition of P(n).

• A common mistake is to define the predicate as P(n) = 4n − 1.
This is wrong because 4n − 1 is not a statement; it does not
evaluate to true or false.
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Mathematical Induction

1.7.3. Non-zero base case

We may relax the requirement for the Base case to start from 0, to let it
start from any a ∈ Z.

The Induction rule becomes:

P(a)

∀ integers k ≥ a, P(k)→ P(k + 1)

• ∀ integers n ≥ a, P(n)

Note that the conclusion says P(n) is true for n ≥ a, and is silent about
P(n) for n < a.
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Mathematical Induction

1.7.4. Negative example

http://assets.inhabitat.com/wp-content/blogs.dir/1/files/2012/03/brown-cows.jpg

Claim: All cows have the same color.
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Mathematical Induction

(Faulty) Proof by Mathematical Induction

1. Let P(n) = (Any group of n cows have the same color), for any n ∈ Z+.

2. Clearly, a single cow has one color, so P(1) is true.

3. Suppose P(k) is true for any integer k ≥ 1:

4. In any group of k + 1 cows, number them from 1 to k + 1.

5. Then cows #1 to #k form a group of k, which have one color by
the Inductive hypothesis.

6. Similarly, cows #2 to #k + 1 have one color.

7. Now cows #2 to #k are common to both groups, and cows
don’t change color because we assign them to different groups.

8. Thus cow #k + 1 has the same color as cow #1, which means
all (k + 1) cows have the same color.

9. Thus P(k + 1) is true. �

What is wrong?
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Mathematical Induction

1.7.5. Strong Induction

• The difference between Strong Induction and Regular Induction lies
only in the Inductive hypothesis. All other steps remain unchanged.

• In the Inductive hypothesis in Regular Induction, you assume P(k)
is true. In Strong Induction, you assume
P(k),P(k − 1),P(k − 2), . . . ,P(a) are all true.

• That is, you make a stronger assumption about the values of n
which make P(n) true, hence the name Strong Induction. From this
stronger assumption, you proceed as before to show that P(k + 1)
is true.

• It may be shown that Regular Induction implies Strong Induction
and vice versa. That is, anything that can be proven using Regular
Induction can be proven using Strong Induction, and vice versa.
However, the benefit of using Strong Induction is the convenience of
using more assumptions. The next example illustrates this.
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Mathematical Induction

1.7.6. Example

Prove: ∀ integers n > 1, n has a prime factorization.

Proof by Strong Induction

1. Let P(n) = (n has a prime factorization), for any integer
n > 1.

2. Base case: n = 2

3. Since 2 is prime, 2 = 2 is a trivial prime factorization.

4. Thus P(2) is true.

· · ·
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Mathematical Induction

proof cont’d

5. Inductive step: For any integer k > 1:

6. Assume P(i) is true for 1 < i ≤ k . (Stronger assumption)

7. That is, all integers i in the range 1 < i ≤ k have prime
factorizations.

8. Consider the integer k + 1:

9. If k + 1 is prime:

10. Then k + 1 = k + 1 is a trivial prime factorization,
and P(k + 1) is true.

· · ·
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Mathematical Induction

proof cont’d

11. Else k + 1 is composite:

12. Then k + 1 = rs, for some integers r , s such that
1 < r , s < k + 1, by definition of composite.

13. Then both r and s have prime factorizations,
by the Inductive hypothesis.

14. Let these be r = p1p2 . . . pu and s = q1q2 . . . qv ,
where all the factors are prime.

15. Then k + 1 = rs = p1p2 . . . puq1q2 . . . qv , by basic algebra.

16. Thus k + 1 has a prime factorization, and P(k + 1) is true.

17. So by Strong Induction, the statement is true. �
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Mathematical Induction

Remarks

Note that in Line 12, the definition of composite does not guarantee that
r = k or s = k .

Thus, the Inductive hypothesis in Regular Induction cannot apply here
(because that hypothesis says only P(k) is true, but r , s may not be
equal to k).

However, Strong Induction overcomes this problem by making stronger
assumptions about the truth set of P(k). This allows the proof to
proceed.

Finally, note that the proof only proves the existence of a prime
factorization, not uniqueness. Try proving uniqueness yourself.
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