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Modulo Arithmetic Summary

Young man, in mathematics
you don’t understand things.
You just get used to them.

If people do not believe that
mathematics is simple, it is
only because they do not
realize how complicated life is.

John von Neumann,
1903 — 1957

Reading

Sections 8.3 (from page 473), 8.4 of Epp.
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Modulo Arithmetic Summary

4.7. Modulo Arithmetic

1 Sep. 2017 is a Friday. What
day of the week is 30 Sep.?

Your friend messages you,
saying, “I’ll see you in three
hours”. Your phone shows
11:30am now. What time will
your friend show up?

To answer both questions, you are doing modulo arithmetic.
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Definition 4.7.1 (Congruence modulo)

Let m and n be integers, and let d be a positive integer. We say that m
is congruent to n modulo d , and write:

m ≡ n (mod d)

if, and only if,
d | (m − n).

Symbolically: m ≡ n (mod d) ⇔ d | (m − n)

Examples: Determine which of the following is true and which is false.

• 12 ≡ 7 (mod 5)

• 6 ≡ −8 (mod 4)

• 3 ≡ 3 (mod 7)

• ∀a, b ∈ Z, not both zero, a ≡ b (mod gcd(a, b))
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Answer:
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Theorem 8.4.1 (Epp): Modular Equivalences

Let a, b, and n be any integers and suppose n > 1. The following
statements are all equivalent:

1. n | (a− b)

2. a ≡ b (mod n)

3. a = b + kn for some integer k

4. a and b have the same (non-negative) remainder when divided
by n

5. amod n = b mod n

Proof: see page 480 of Epp.

Note that amod n is the non-negative remainder r , when a is
divided by n. By the Quotient-Remainder Theorem, 0 ≤ r < n.
Another name for this is the residue of a modulo n.
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4.7.1. Arithmetic

Theorem 8.4.3 (Epp): Modulo Arithmetic

Let a, b, c , d and n be integers with n > 1, and suppose:

a ≡ c (mod n) and b ≡ d (mod n).

Then

1. (a + b) ≡ (c + d) (mod n)

2. (a− b) ≡ (c − d) (mod n)

3. ab ≡ cd (mod n)

4. am ≡ cm (mod n), for all positive integers m.
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We will prove part 3. Try the rest yourself!

Proof:

1. For any integers a, b, c , d , n with n > 1:

2. Suppose a ≡ c (mod n) and b ≡ d (mod n):

3. Then by Theorem 8.4.1 (Epp), there exist integers
s, t such that a = c + sn and b = d + tn.

4. Then ab = (c + sn)(d + tn), by substitution.

5. = cd + n(ct + sd + stn), by basic algebra.

6. Let k = (ct + sd + stn). This is an integer by the
closure property.

7. Thus ab = cd + nk .

8. By Theorem 8.4.1 (Epp), ab ≡ cd (mod n). �
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A more useful form of part 3 is this Corollary:

Corollary 8.4.4 (Epp)

Let a, b, n be integers with n > 1. Then,

ab ≡ [(amod n)(b mod n)] (mod n),

or, equivalently,

ab mod n = [(amod n)(b mod n)]mod n.

In particular, if m is a positive integer, then

am ≡ [(amod n)m] (mod n).

Clarification: “amod n” is an operation; it means calculate the residue of
a. But “(mod n)” is not an operation; instead, it merely specifies the
“clock” we are using.
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Example:

Calculate: (a) 55 · 26mod 4, (b) 1444 mod 713

Answer:

(a) 55 · 26mod 4 = [(55mod 4)(26mod 4)]mod 4

= (3)(2)mod 4

= 6mod 4

= 2

(b) 1444 mod 713 = (1442)2 mod 713

= (1442 mod 713)2 mod 713

= (20736mod 713)2 mod 713

= 592 mod 713

= 3481mod 713

= 629
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4.7.2. Inverses

Normal arithmetic has the Cancellation Law for Multiplication (T7 of
Appendix A (Epp)):

For integers a, b, c with a 6= 0, if

(1) ab = ac

then b = c .

This is not true in modulo arithmetic:

ab ≡ ac (mod n) does not imply b ≡ c (mod n)

Example:
Clearly, 3× 1 ≡ 3× 5 (mod 6).
But, 1 6≡ 5 (mod 6).
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When “cancelling” a on both sides of Equation (1), we are really
multiplying with the multiplicative inverse of a. By definition, the
multiplicative inverse is a number s such that as = 1. Thus we need a
suitable inverse that works with modulo arithmetic.

Definition 4.7.2 (Multiplicative inverse modulo n)

For any integers a, n with n > 1, if an integer s is such that as ≡ 1
(mod n), then s is called the multiplicative inverse of a modulo n. We
may write the inverse as a−1.

Because the commutative law still applies in modulo arithmetic, we also
have a−1a ≡ 1 (mod n).

12 / 21



Modulo Arithmetic Summary

Note that multiplicative inverses are not unique, since if s is such
an inverse, then so is (s + kn) for any integer k (Why?)

Example:

Consider a = 5 and n = 9: By inspection, 5 · 2 ≡ 1
(mod 9), so 5−1 = 2 (mod 9).

Other multiplicative inverses include: 2+9 = 11, 2−9 =
−7, 2 + 900 = 902.
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Given any integer a, its multiplicative inverse a−1 may not exist. This
next theorem tells us exactly when it exists.

Theorem 4.7.3 (Existence of multiplicative inverse)

For any integer a, its multiplicative inverse modulo n (where n > 1), a−1,
exists if, and only if, a and n are coprime.

Recall that two numbers are coprime, or relatively prime, iff their gcd is 1.

Corollary 4.7.4 (Special case: n is prime)

If n = p is a prime number, then all integers a in the range 0 < a < p
have multiplicative inverses modulo p.
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Proof: (Forward direction)

1. For any integers a, n with n > 1:

2. If a−1 exists:

3. Then a−1a ≡ 1 (mod n), by definition of multiplicative inverse.

4. Then a−1a = 1 + kn, for some integer k , by Theorem
8.4.1 (Epp).

5. Re-write: aa−1 − nk = 1, by basic algebra.

6. (Claim: all common divisors of a and n are ±1.)

7. Take any common divisor, d , of a and n.

8. d | a and d | n by definition of common divisor.

9. So d | 1 by Line 5 and Theorem 4.1.1.

10. Thus, d = 1 or d = −1 by Theorem 4.3.2 (Epp).

11. Hence gcd(a, n) = 1.
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Proof: (Backward direction)

1. For any integers a, n with n > 1:

2. If gcd(a, n) = 1:

3. Then by Bézout’s Identity, there exist integers s, t
such that as + nt = 1.

4. Thus as = 1− tn, by basic algebra.

5. Then by Theorem 8.4.1 (Epp), as ≡ 1 (mod n). �

Note that the above tells us how to find a multiplicative inverse for a
modulo n: simply run the Extended Euclidean Algorithm!
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Example:

Find 3−1 (mod 40).

1. Since 3 is prime, and 40 = 23 · 5, it is easy to see that
gcd(3, 40) = 1.

2. Also, note that 40 = 3(13) + 1.

3. Re-write: 3(−13) = 1− 40.

4. Thus by Theorem 8.4.1 (Epp), 3(−13) ≡ 1 (mod 40).

5. Thus 3−1 = −13.

But this is ugly. We prefer a positive inverse. This can be corrected
simply by adding a multiple of 40, eg. −13 + 40 = 27. Hence 3−1 = 27.
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Example:

Find 2−1 (mod 4).

Note that gcd(2, 4) = 2, so 2 and 4 are not coprime. Thus, by Theorem
4.7.3, 2−1 does not exist.

Indeed, we can check this:

2 · 1 ≡ 2 (mod 4),

2 · 2 ≡ 0 (mod 4),

2 · 3 ≡ 2 (mod 4).

By Theorem 8.4.3 (Epp), these calculations suffice to conclude that 2−1

does not exist.
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The use of multiplicative inverses leads us to a Cancellation Law for
modulo arithmetic:

Theorem 8.4.9 (Epp)

For all integers a, b, c , n, with n > 1 and a and n are coprime,
if ab ≡ ac (mod n), then b ≡ c (mod n).

Proof sketch

Since a and n are coprime, Theorem 4.7.3 guarantees the existence of a
multiplicative inverse a−1.

Multiply both sides of ab ≡ ac (mod n) with a−1 gives the desired
answer.

Quiz: In T7 of Appendix A (Epp) (Cancellation Law for integers), it is
explicitly stated that a 6= 0. Yet the above theorem doesn’t seem to
require this. Why not?
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Example:

Solve the equation 5x + 13y = 75 for integers x , y .

Such an equation is called a Diophantine equation.

1. Re-write: 5x = 75− 13y .

2. Then 5x ≡ 75 (mod 13), by Theorem 8.4.1 (Epp).

3. Re-write: 5x ≡ 5 · 15 (mod 13).

4. Note that 5 and 13 are coprime.

5. Thus, x ≡ 15 (mod 13), by Theorem 8.4.9 (Epp).

6. Thus, x ≡ 2 (mod 13), because 15mod 13 = 2.

7. So x = 2 is a solution.

8. Substituting back into the equation: 5(2) + 13y = 75.

9. And thus y = 5.

Other solutions include: (x , y) = (15, 0), (−11, 10), (28,−5).
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4.8. Summary

1. We have learned many things in Number Theory:

(a) Divisibility
(b) Primes and prime factorization
(c) Well ordering principle
(d) Quotient-Remainder Theorem
(e) Number bases
(f) Greatest common divisor
(g) Modulo arithmetic

2. Yet we have merely scratched the surface of a deep and fascinating
field that has many applications.

3. Many Open Questions remain in Number Theory. Now and then
someone will announce a breakthrough in one of these Questions. It
is fun to follow their development, even if we don’t fully understand
their esoteric proofs.
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