7. Functions

Terence Sim

7.1. Functions

$" f(x)=x^{2} \times(b-x)=d . "$
Treatise on Algebra Sharaf al-Din al-Tusi

Reading

Chapter 3.7, 3.8 of Campbell.
Chapter 1.3, 7.1 - 7.3 of Epp.

Definition 7.1.1

Let f be a relation such that $f \subseteq S \times T$. Then f is a function from S to T, denoted $f: S \rightarrow T$ iff

$$
\forall x \in S, \exists y \in T(x f y \wedge(\forall z \in T(x f z \rightarrow y=z)))
$$

Notation for uniqueness
$\exists!x \in T p(x) \equiv \exists x \in T(p(x) \wedge \forall y \in T(p(y) \rightarrow x=y))$.

Definition 7.1.1 becomes:
Let f be a relation such that $f \subseteq S \times T$. Then f is a function from S to T, denoted $f: S \rightarrow T$ iff

$$
\forall x \in S, \exists!y \in T(x f y)
$$

Let $f: S \rightarrow T$ be a function. We write $f(x)=y($ or $x \mapsto y)$ iff $(x, y) \in f$. The relation notation is $x f y$. Also, x is called the argument of f.

Every dot in S must have exactly one outgoing arrow.

Is this a function?

Definition 7.1.2

Let $f: S \rightarrow T$ be a function. Let $x \in S$. Let $y \in T$ such that $f(x)=y$. Then x is called a pre-image of y.

Definition 7.1.3

Let $f: S \rightarrow T$ be a function. Let $y \in T$. The inverse image of y is the set of all its pre-images: $\{x \in S \mid f(x)=y\}$.

Definition 7.1.4

Let $f: S \rightarrow T$ be a function. Let $U \subseteq T$. The inverse image of U is the set that contains all the pre-images of all elements of U : $\{x \in S \mid \exists y \in U, f(x)=y\}$.

Definition 7.1.5
Let $f: S \rightarrow T$ be a function. Let $U \subseteq S$. The restriction of f to U is the set: $\{(x, y) \in U \times T \mid f(x)=y\}$.

Example:

- The pre-image of c is 3 .
- The inverse image of b is $\{1,2\}$.
- The inverse image of $\{a, d\}$ is \varnothing.
- The inverse image of T is $\{1,2,3\}$.
- The restriction of f to $\{2,3\}$ is $\{(2, b),(3, c)\}$.

7.2.1. Injective

Definition 7.2.1

Let $f: S \rightarrow T$ be a function. f is injective iff

$$
\forall y \in T, \forall x_{1}, x_{2} \in S\left(\left(f\left(x_{1}\right)=y \wedge f\left(x_{2}\right)=y\right) \rightarrow x_{1}=x_{2}\right)
$$

We also say that f is an injection or that f is one-to-one.
Examples:
The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$, where $\forall x \in \mathbb{Z}, f(x)=x+1$ is injective.
But the function $g: \mathbb{Z} \rightarrow \mathbb{Z}$, where $\forall x \in \mathbb{Z}, g(x)=x^{2}$ is not injective.

Every dot in T has at most one incoming arrow.

7.2.2. Surjective

Definition 7.2.2

Let $f: S \rightarrow T$ be a function. f is surjective iff

$$
\forall y \in T, \exists x \in S(f(x)=y)
$$

We also say that f is a surjection or that f is onto.
Examples:
The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$, where $\forall x \in \mathbb{Z}, f(x)=x+1$ is surjective.
But the function $g: \mathbb{Z} \rightarrow \mathbb{Z}$, where $\forall x \in \mathbb{Z}, g(x)=x^{2}$ is not surjective.

Every dot in T has at least one incoming arrow.

7.2.3. Bijective

Definition 7.2.3

Let $f: S \rightarrow T$ be a function. f is bijective iff f is injective and f is surjective. We also say that f is a bijection.

Every dot in T has exactly one incoming arrow.

7.2.4. Inverse

Proposition 7.2.4

Let $f: S \rightarrow T$ be a function and let f^{-1} be the inverse relation of f from T to S. Then f is bijective iff f^{-1} is a function.

This Proposition tells us when the inverse of a function exists.

Proof: forward direction

(Need to prove: if f is bijective then f^{-1} is a function)

1. Assume that f is bijective:
2. Then f is surjective by definition of bijective.
3. Thus $\forall y \in T, \exists x(x f y)$ by definition of surjective.
4. Thus $\forall y \in T, \exists x\left(y f^{-1} x\right)$ by definition of the inverse relation.
5. Also, f is injective by definition of bijective.
6. Thus $\forall y \in T, \forall x_{1} \in S, \forall x_{2} \in S\left(\left(x_{1} f y \wedge x_{2} f y\right) \rightarrow x_{1}=x_{2}\right)$ by definition of injective.
7. So $\forall y \in T, \forall x_{1} \in S, \forall x_{2} \in S\left(\left(y f^{-1} x_{1} \wedge y f^{-1} x_{2}\right) \rightarrow x_{1}=x_{2}\right)$ by definition of inverse relation.
8. This means the x in Line 4 is unique.
9. Thus f^{-1} is a function by definition of function.

Proof: backward direction

(Need to prove: if f^{-1} is a function then f is injective.)
10. Assume f^{-1} is a function:
11. Suppose f is not injective.
12. Then $\exists y \in T, \exists x_{1}, x_{2} \in S\left(x_{1} f y \wedge x_{2} f y \wedge x_{1} \neq x_{2}\right)$ by definition of injective.
13. Thus $\exists y \in T, \exists x_{1}, \exists x_{2} \in S\left(y f^{-1} x_{1} \wedge y f^{-1} x_{2} \wedge x_{1} \neq x_{2}\right)$ by definition of the inverse relation.
14. Therefore f^{-1} is not a function. Contradiction.
15. Therefore f is injective.

Proof cont'd

(Need to prove: if f^{-1} is a function then f is surjective.)
16. Assume f^{-1} is a function:
17. Suppose f is not surjective:
18. Then $\exists y \in T, \forall x \in S \sim(f(x)=y)$ by definition of surjective.
19. Thus $\exists y \in T, \forall x \in S \sim\left(y f^{-1} x\right)$ by definition of the inverse relation.
20. Therefore f^{-1} is not a function. Contradiction.
21. Therefore f is surjective.
22. Hence f is bijective, by Lines 15,21 .
23. Hence f is bijective iff f^{-1} is a function.

7.3. Composition

Proposition 7.3.1

Let $f: S \rightarrow T$ be a function. Let $g: T \rightarrow U$ be a function. The composition of f and $g, g \circ f$, is a function from S to U.

Note that $(g \circ f)(x)$ means $g(f(x))$.

Proof.

1. Let $f: S \rightarrow T$ be a function
2. Let $g: T \rightarrow U$ be a function.
3. Therefore $g \circ f$ is a relation on the sets S and U by Definition 8.2.8 (Composition of relations).
4. Therefore $\forall x \in S, \exists!y \in T(x f y)$ by Definition 7.1.1.
5. Therefore $\forall y \in T, \exists!z \in U(y g z)$ by Definition 7.1.1.
6. Therefore $\forall x \in S, \exists!z \in U(x(g \circ f) z)$ by Steps (4), (5) and by Definition 8.2.8
7. Therefore $g \circ f$ is a function from S to U by Steps (3) and (6). \square

7.3.2. Identity

Definition 7.3.2 (Identity function)
Given a set A, define a function \mathcal{I}_{A} from A to A by:

$$
\forall x \in A\left(\mathcal{I}_{A}(x)=x\right)
$$

This is the identity function on A.

Proposition 7.3.3

Let $f: A \rightarrow A$ be an injective function on A. Then $f^{-1} \circ f=\mathcal{I}_{A}$.

Proof omitted.

Notice that $f \circ f^{-1}=f^{-1} \circ f=\mathcal{I}_{A}$ if, and only if, f^{-1} is also a function. That is, if, and only if, f is bijective according to Proposition 7.2.4.

Generalization

So far, our functions accept only one argument. We can easily generalize functions to accept two arguments simply by making the domain a Cartesian product.

For example, let $f: A \times B \rightarrow C$ be a function. Then the argument to f is an ordered pair (a, b), where $a \in A$ and $b \in B$. That is, we write $f((a, b))$; which we simplify to $f(a, b)$.

Likewise, if $g: A \times B \times C \rightarrow D$ is a function, then we will write $g(a, b, c)$ instead of $g((a, b, c))$. In this way, we can allow functions to accept any finite number of arguments.

Finally, we may allow functions to return "multiple values" by making the co-domain a Cartesian product. Example:

Define $h: \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by $\forall x \in \mathbb{Z}, h(x)=\left(x^{2}, x+3\right)$.

7.4.1. Exercises

Exercise 1

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\forall x \in \mathbb{R}, \quad f(x)=4 x-1
$$

Is f one-to-one (injective)? Prove or give a counter-example.

To prove one-to-one, according to Definition 7.2.1, we need to show:

$$
\forall x_{1}, x_{2} \text { if } f\left(x_{1}\right)=f\left(x_{2}\right) \text { then } x_{1}=x_{2}
$$

Proof:

1. For any $x_{1}, x_{2} \in \mathbb{R}$:
2. If $f\left(x_{1}\right)=f\left(x_{2}\right)$:
3. Then $4 x_{1}-1=4 x_{2}-1$, by definition of f.
4. Then $x_{1}=x_{2}$, by basic algebra.
5. Hence f is indeed one-to-one. \square

Exercise 2

Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
\forall x \in \mathbb{Z}, \quad g(x)=x^{2}
$$

Show that g is not injective.

1. Clearly, $g(3)=9=g(-3)$.
2. But $3 \neq-3$.
3. Hence g is not injective.

Exercise 3

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $\forall x \in \mathbb{R}, \quad f(x)=4 x-1$.
Define $h: \mathbb{Z} \rightarrow \mathbb{Z}$ by $\forall n \in \mathbb{Z}, \quad h(n)=4 n-1$.
Is f onto? Is h onto? Prove or give a counter-example.

From Definition 7.2.2, to prove that a function $F: X \rightarrow Y$ is onto, we need to show that:

$$
\forall y \in Y, \exists x \in X(F(x)=y)
$$

Proof: (by Construction)

1. Take any $y \in \mathbb{R}$.
2. Let $x=(y+1) / 4$.
3. Then $x \in \mathbb{R}$ because real numbers are closed under addition and division.
4. Thus $f(x)=f\left(\frac{y+1}{4}\right)$, by substitution.
5. $=4\left(\frac{y+1}{4}\right)-1$, by definition of f.
6. $=(y+1)-1=y$, by basic algebra.
7. Thus f is onto.

However, for h, if we attempt the same proof, we will arrive at $n=\frac{m+1}{4}$.

This n may not be an integer, even if m is. For example, let $m=0$, then $n=\frac{1}{4}$. This allows us to give a counter-example.

Disproof by counterexample:

1. Let $y=0$.
2. (Claim: there is no $n \in \mathbb{Z}$ such that $h(n)=y$)
3. Suppose $\exists n \in \mathbb{Z}$ such that $h(n)=y$:
4. Then $4 n-1=0$, by substitution.
5. Thus $4 n=1$, by basic algebra.
6. Thus $4 \mid 1$, by definition of divisibility.
7. Contradiction.
8. Hence, $\exists y \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}(h(n) \neq y)$.
9. Hence h is not onto.

7.5. Summary

- A function is a special case of a relation.
- Important function properties of functions are: injective, surjective and bijective.
- The inverse of a function exists only iff it is bijective.
- Functions may be composed, just like relations.

