Tutorial 10

Graphs I

1 Exploration

Read the document "IdolRank" posted on the IVLE "Tutorials" workbin or the CS1231 website "Tutorials" page.

By hand or using a computer program, find out the winner of each of the five graphs below. $P 1, P 2$ and $P 3$ represent three contestants, and an arrow from vertex x to vertex y indicates that x is the referee of y. The second graph is already solved in the above "IdolRank" document.

(a)

(b)

(c)

(d)

(e)

2 Tutorial questions

Definition 1. If G is a simple graph, the complement of G, denoted G^{\prime}, is obtained as follows: The vertex set of G^{\prime} is identical to the vertex set of G. However, two distinct vertices v and w of G^{\prime} are connected by an edge if, and only if, v and w are not connected by an edge in G.

The figure below shows a graph G and its complement G^{\prime}.

A graph G and its complement G^{\prime}.

Definition 2. A simple circuit (cycle) of length three is called a triangle.

Q1. (AY2016/17 Semester 1 Exam Question)
How many simple graphs on 3 vertices are there? In general, how many simple graphs are there on $n(n>1)$ vertices?

Q2. (AY2016/17 Semester 1 Exam Question)
Let G be a simple graph with n vertices where every vertex has degree at least $\left\lfloor\frac{n}{2}\right\rfloor$. Prove that G is connected.

Q3. Show that every simple graph with at least two vertices has two vertices of the same degree.

Q4. Prove that for any simple graph G with six vertices, G or its complement graph G^{\prime} contains a triangle.

Q5. Show that in a connected simple graph any two longest paths have a vertex in common.

Q6. Answer the following questions on complete graph and Hamiltonian cycle.
a. How many Hamiltonian cycles are there in a complete graph $K_{n}(n \geq 3)$? In this question, the start vertex and direction of the cycle do not matter. Hence, there is only one Hamiltonian cycle in K_{3}.
b. Prove by induction on n that a complete graph K_{n} on $n \geq 3$ vertices contains a Hamiltonian cycle.

Q7. Given the following graph shown in the figure below.

a. Write the adjacency matrix \mathbf{A} for the graph. Let the rows and columns be p, q, r and s.
b. Find $\mathbf{A}^{\mathbf{2}}$ and $\mathbf{A}^{\mathbf{3}}$.
c. How many walks of length 2 are there from p to q ? From s to itself? List out all the walks.
d. How many walks of length 3 are there from r to s ? From s to p ? List out all the walks.

Q8. (AY2017/18 Semester 1 Exam Question)
Suppose you are given a pile of n stones. At each step, you are allowed to separate a pile of k stones into two piles of k_{1} and k_{2} stones. Obviously, $k_{1}+k_{2}=k$. On doing this, you earn $k_{1} \times k_{2}$ dollars. What is the maximum amount of money you can earn starting with a pile of n stones? Explain your answer.

