NATIONAL UNIVERSITY OF SINGAPORE

CS1231S - DISCRETE STRUCTURES

(Semester 2: AY2022/23)
Final Assessment Answer Sheet
Time Allowed: 2 Hours

INSTRUCTIONS

1. Write your Student Number on the right AND, using pen or pencil, shade the corresponding circle completely in the grid for each digit or letter. DO NOT WRITE YOUR NAME!
2. Zero mark will be given if you write/shade your Student Number incompletely or incorrectly.
3. Write your Student Number at the top of pages 3 and 5.
4. This answer sheet comprises SIX (6) pages.
5. All questions must be answered in the space provided; no extra sheets will be accepted as answers.
6. You must submit only this ANSWER SHEET and no other documents.

四STUDENT NUMBER

7. An excerpt of the question may be provided to aid you in answering in the correct box. It is not the exact question. You should still refer to the original question in the question paper.
8. You may write your answers using pencil (at least 2B) or pen as long as it is legible (no red ink, please).
9. The maximum mark for this paper is 100 .
10. Marks may be deducted for (i) illegible handwriting, and/or (ii) excessively long explanations.
11. Each multiple choice question is intended to have only one answer. Shade the appropriate bubbles using pencil only.

For Examiner's Use Only		
Question	Marks	Remarks
Q1-20	$/ 40$	
Q21	$/ 5$	
Q22	$/ 20$	
Q23	$/ 20$	
Q24	$/ 9$	
Q25	$/ 100$	
Total		

Part A: Multiple Choice Questions (Total: 40 marks)

Please shade only ONE bubble for each question. Please use ONLY pencil to shade.

	(A)	(B)	(C)	(D)	(E)
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
14.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
15.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
17.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
19.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	(A)	(B)	(C)	(D)	(E)

Part B (Total: 60 marks)
21. Mathematical induction. [5 marks]

1. For each $n \in \mathbb{N}$, let $P(n) \equiv\left(\operatorname{Even}\left(F_{n}\right) \Leftrightarrow \operatorname{Even}\left(F_{n+3}\right)\right)$.
2. Graphs and trees. [20 marks]
(a) Which of C_{4}, S_{4}, W_{4} are complete graphs?
(b) Which of $C_{1231}, S_{1231}, W_{1231}$ are planar graphs?
(c) C_{1231} has an Euler circuit. True or false?
W_{1231} has an Euler circuit. True or false?
d)
\square colours for C_{5}; \square colours for S_{5}; \square colours for W_{5}.
3. Graphs and trees. (continue...) [20 marks]
(e) All non-isomorphic spanning trees of C_{5}, S_{5}, W_{5}.
(f) Possibility tree to determine the number of Hamiltonian paths in W_{4} with initial vertex at v_{1}.
(g) Number of unique open-loop Hamiltonian paths in W_{4} :

(i) Height of binary tree is
(j) $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ is always a partition of V. True or false?
$\left\{E_{1}, E_{2}, \cdots, E_{k}\right\}$ is always a partition of E. True or false?

4. Counting and probability. [20 marks]
(a)
[1]

(d) \square
(e)
(i)
$[1]$
${ }_{[1]}^{\text {(ii) }} P(X=2)=$
$\int_{[3]}^{\text {(iii) }} E(X)=$
(f)
(i) $\left|S_{1 v}\right|$ [2]
(f)
(iii) $\left|S_{\geq 1 v}\right|$ [2]
(iv) $\left|S_{\geq 2 v}\right|$
[2]
5. Relations and functions. [9 marks]
\square
6. Relations and functions. (continue...) [9 marks]
(c)
[3]
Order of $f=\square ; \quad$ order of $g=\square ; \quad$ order of $\left(f^{-1} \circ g\right)=\square \square$ 25. Cardinality. [6 marks]
\square
