Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 0	0 0

4. Methods of Proof

Aaron Tan

AY2024/25 Semester 1

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof	
00000	0 0 0	0 0	0 0	
4. Methods of Proof				

4.1 Direct Proof and Counterexample

- Definitions: even and odd numbers; prime and composite.
- Proving existential statements by constructive proof.
- Disproving universal statements by counterexample.
- Proving universal statements by exhaustion.
- Proving universal statements by generalizing from the generic particular.

4.2 Proofs on Rational Numbers

- Every integer is a rational number.
- Sum of any two rational numbers is rational.

4.3 Proofs on Divisibility

• Positive divisor of a positive integer; divisors of 1; transitivity of divisibility.

4.4 Indirect Proof

• Proof by contradiction; proof by contraposition.

Reference: Epp's Chapter 4 Elementary Number Theory and Methods of Proof

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	0 0 0	0 0	0 0

4.1 Definitions

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof	
• • • • • •	0 0 0	0 0	0 0	
Definitions				
411 Definitions				

Assumptions

- In this text we assume a familiarity with the laws of basic algebra, which are listed in Appendix A.
- We also use the three properties of equality: For all objects A, B, and C,
 (1) A = A, (2) if A = B then B = A, and (3) if A = B and B = C, then A = C.
- In addition, we assume that there is no integer between 0 and 1 and that the set of all integers is closed under addition, subtraction, and multiplication. This means that sums, differences, and products of integers are integers.
- Of course, most quotients of integers are not integers. For example, 3 ÷ 2, which equals 3/2, is not an integer, and 3 ÷ 0 is not even a number.

Appendix A has been uploaded onto "LumiNUS > Files > Lecture slides and notes" and the CS1231S website.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	0 0 0	0 0	0 0
Definitions: Even and Odd Integers			

Recall from Lecture #2:

Definitions: Even and Odd Integers

An integer n is even if, and only if, n equals twice some integer.

An integer n is odd if, and only if, n equals twice some integer plus 1.

Symbolically, if n is an integer, then

n is even $\iff \exists k \in \mathbb{Z}$ such that n = 2k.

 $n \text{ is odd} \iff \exists k \in \mathbb{Z} \text{ such that } n = 2k + 1.$

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	0 0 0	0 0	0 0
Definitions: Prime and Composite			

Definitions: Prime and Composite

An integer n is prime iff n > 1 and for all positive integers r and s, if n = rs, then either r or s equals n.

An integer *n* is composite iff n > 1 and n = rs for some integers *r* and *s* with 1 < r < n and 1 < s < n.

In symbols:

n

n is prime:
$$(n > 1) \land \forall r, s \in \mathbb{Z}^+$$
,
 $(n = rs \rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1)).$
is composite: $\exists r, s \in \mathbb{Z}^+ (n = rs \land (1 < r < n) \land (1 < s < n)).$

There are other ways of defining prime. For example:

n is prime:
$$(n > 1) \land (\forall r, s \in \mathbb{Z} ((r > 1) \land (s > 1) \rightarrow rs \neq n)).$$

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	0 0 0	0 0	0 0

CS1231S Midterm Test (AY2019/20 Sem1)

Given the following predicate:

 $P(x) = (x \neq 1) \land \forall y, z (x = yz \rightarrow ((y = x) \lor (y = 1)))$ and that the domain of x, y and z is \mathbb{Z}^+ , what is P(x)?

A. P(x) is true iff x is a prime number.

- B. P(x) is true iff x is a number other than 1.
- C. P(x) is always true irrespective of the value of x.
- D. P(x) is true if x has exactly two factors other than 1 and x.
- E. None of the above.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \bullet \circ \circ \circ$	0 0 0	0 0	0 0
Proving Existential Statements: Co	ostructivo Proof		

4.1.2. Proving Existential Statements by Constructive Proof

An existential statement:

 $\exists x \in D \ Q(x)$

is true iff Q(x) is true for <u>at least one</u> x in D.

To prove such statement, we may use constructive proofs of existence:

- Find an x in D that makes Q(x) true; or
- Give a set of directions for finding such an x.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
○ ● ○ ○ ○		O O	O O
Proving Existential Statements: Co	nstructive Proof		

Example #1

- a. Prove that there exists an even integer *n* that can be written in two ways as a sum of two prime numbers.
- b. Suppose r and s are integers. Prove that there is an integer k such that 22r + 18s = 2k.
- a. Let n = 10. Then 10 = 5 + 5 = 3 + 7, where 3, 5 and 7 are all prime numbers.

Note that the question does <u>not</u> say that the two prime numbers must be distinct.

b. Let k = 11r + 9s. Then k is an integer because it is a sum of products of integers (by closure property); and 2k = 2(11r + 9s) = 22r + 18s (by distributive law).

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \circ \bullet \circ \circ$	0 0 0	0 0	0 0
Disproving Universal Statements:	Countorovampla		

4.1.3. Disproving Universal Statements by Counterexample

Given a universal (conditional) statement:

$$\forall x \in D\left(P(x) \to Q(x)\right).$$

Showing this statement is false is equivalent to showing that its negation is true.

The negation of the above statement is an existential statement:

$$\exists x \in D(P(x) \land \sim Q(x)).$$

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \circ \bullet \circ \circ$	0 0 0	0 0	0 0
Disproving Universal Statements: Counterexample			

To prove that an existential statement is true, we use an example (constructive proof), which is called the counterexample for the original universal conditional statement.

Disproof by Counterexample

To disprove a statement of the form

$$\forall x \in D\left(P(x) \to Q(x)\right),$$

find a value of x in D for which the hypothesis P(x) is true but the conclusion Q(x) is false.

Such an *x* is called a **counterexample**.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \circ \bullet \circ \circ$	0 0 0	0 0	0 0
Disproving Universal Statements: Counterexample			

Example #2: Disprove the following statement $\forall a, b \in \mathbb{R}$, if $a^2 = b^2$ then a = b.

Counterexample: Let a = 1 and b = -1. Then $a^2 = 1^2 = 1$ and $b^2 = (-1)^2 = 1$ and so $a^2 = b^2$. But $a \neq b$.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \circ \circ \bullet \circ$	0 0 0	0 0	0 0
Proving Universal Statements: Exha	ustion		

4.1.4. Proving Universal Statements by Exhaustion

Given a universal conditional statement:

$$\forall x \in D\left(P(x) \to Q(x)\right).$$

When D is finite or when only a finite number of elements satisfy P(x), we may prove the statement by the method of exhaustion.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\circ \circ \circ \bullet \circ$	0 0 0	0 0	0 0
Proving Universal Statements: Exhaustion			

Example #3: Prove the following statement

 $\forall n \in \mathbb{Z}$, if *n* is even and $4 \le n \le 26$, then *n* can be written as a sum of two primes.

Proof (by method of exhaustion):

4 = 2 + 2

16 = 5 + 11

- 6 = 3 + 3
- 8 = 3 + 5
- 10 = 5 + 5
- 12 = 5 + 7
- 14 = 11 + 3

- 18 = 7 + 11
- 20 = 7 + 13
- 22 = 5 + 17
- 24 = 5 + 19
 - 26 = 7 + 19

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
○ ○ ○ ○ ●	O O O	O O	O O
Proving Universal Statements: Gene	aralizing from the Generic Pa	rticular	

4.1.5. Proving Universal Statements by Generalizing from the Generic Particular

The most powerful technique for proving a universal statement s one that works regardless of the size of the domain (possibly infinite) over which the statement is quantified.

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a *particular* but *arbitrarily chosen* element of the set, and show that x satisfies the property.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof	
0000	0 0 0	0 0	0 0	
Proving Universal Statements: Generalizing from the Generic Particular				

Example #4: Prove that the sum of any two even integers is even.

Proof:

- 1. Let *m* and *n* be two particular but arbitrarily chosen even integers.
 - 1.1 Then m = 2r and n = 2s for some integers r and s (by the definition of even number)
 - 1.2 m + n = 2r + 2s = 2(r + s) (by basic algebra)
 - 1.3 2(r + s) is an integer (by closure of integers under + and ×) and an even number (by the definition of even number)
 - 1.4 Hence m + n is an even number.
- 2. Therefore the sum of any two even integers is even.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
	● ○ ○	O O	O O

4.2 Proofs on Rational Numbers

Direct Proof and Counterexample ● ○ ○ ○ ○	Rational Numbers ● ○ ○	Divisibility O O	Indirect Proof 〇 〇
Definition			
4.2.1. Definition			

In this section, we will apply proof techniques we have learned on rational numbers.

Definition: Rational Numbers

A real number r is rational if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator.
A real number that is not rational is irrational.

r is rational $\Leftrightarrow \exists$ integers a and b such that $r = \frac{a}{b}$ and $b \neq 0$.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
● ○ ○ ○ ○	○ ● ○	O O	O O
Every Integer is a Pational Number			

4.2.2. Every Integer is a Rational Number

Theorem 4.2.1 (5th: 4.3.1)

Every integer is a rational number.

Proof:

- 1. Let *a* be a particular but arbitrarily chosen integer.
 - 1.1 Then $a = \frac{a}{1}$ which is in the form $\frac{a}{b}$ where a and b(=1) are integers.
 - 1.2 Hence *a* is a rational number.
- 2. Therefore every integer is a rational number.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	00	0 0	0 0

The Sum of Any Two Rational Numbers is Rational

4.2.3. The Sum of Any Two Rational Numbers is Rational

Theorem 4.2.2 (5th: 4.3.2)

The sum of any two rational numbers is rational.

Proof:

- 1. Let *r* and *s* be two particular but arbitrarily chosen rational numbers.
 - 1.1 Then $r = \frac{a}{b}$ and $s = \frac{c}{d}$ for some integers a, b, c, d with $b \neq 0$ and $d \neq 0$ (by the definition of rational number).
 - 1.2 Then $r + s = \frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ (by basic algebra).
 - 1.3 Since ad + bc and bd are integers (by closure of integers under + and ×) and $bd \neq 0$, so r + s is rational.
- 2. Therefore the sum of any two rational numbers is rational.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
$\bullet \circ \circ \circ \circ$	○ ○ ●	0 0	0 0
Corollary; The Double of a Rational	Number is Rational		

Recall from Lecture #2:

Corollary

A result that is a simple deduction from a theorem.

Example:

(Chapter 4)

Theorem 4.2.2 (5th: 4.3.2) The sum of any two rational numbers is rational Corollary 4.2.3 (5th: 4.3.3) The double of a rational number is rational.

Theorem 4.2.2 (5th: 4.3.2)

The sum of any two rational numbers is rational.

Corollary 4.2.3 (5th: 4.2.3)

The double of a rational number is rational.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	• •	0 0

4.3 Proofs on Divisibility

Direct Proof and Counterexample	Rational Numbers	Divisibility ● ○	Indirect Proof O O	
Definition				
4.3.1. Definition				

Recall from Lecture #2:

Definition: Divisibility

```
If n and d are integers, then
```

n is divisible by d iff n equals d times some integer.

We use the notation $d \mid n$ to mean "d divides n". Symbolically, if $n, d \in \mathbb{Z}$:

 $d \mid n \Leftrightarrow \exists k \in \mathbb{Z}$ such that n = dk.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
〇〇〇〇〇	O O O	○ ●	O O
Theorems: A Positive Divisor of a P	ositive Integer		

4.3.2. Theorems

Theorem 4.3.1 (5th: 4.4.1) A Positive Divisor of a Positive Integer

For all positive integers a and b, if $a \mid b$, then $a \leq b$.

Proof (direct proof):

- 1. Let a and b be two positive integers and $a \mid b$.
 - 1.1 Then there exists an integer k such that b = ak (by the definition of divisibility).
 - 1.2 Since both a and b are positive integers, k is positive, i.e. $k \ge 1$.
 - 1.3 Therefore $a \leq ak = b$.
- 2. Therefore for all positive integers a and b, if $a \mid b$, then $a \leq b$.

Direct Proof and Counterexample $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Rational Numbers	Divisibility ○ ●	Indirect Proof O O
Theorems: Divisors of 1			

Theorem 4.3.2 (5th: 4.4.2) Divisors of 1

The only divisors of 1 are 1 and -1.

Proof (by division into cases):

- 1. Suppose *m* is any integer that divides 1.
 - 1.1 Then there exists an integer k such that 1 = mk (by the definition of divisibility).
 - 1.2 Since *mk* is positive, either both *m* and *k* are positive, or both negative.
 - 1.3 Case 1: Both m and k are positive. 1.3.1 Since $m \mid 1, m \leq 1$ (by Theorem 4.3.1). 1.3.2 Then m = 1.
 - 1.4 Case 2: Both m and k are negative.
 1.4.1 Then m is a positive integer divisor of 1, i.e. m|1.

1.4.2 By the same reasoning in 1.3.1 and 1.3.2, -m = 1, or m = -1.

2. Therefore the only divisors of 1 are 1 and -1.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 •	• 0
Theorems: Transitivity of Divisibility			

Theorem 4.3.3 (5th: 4.4.3) Transitivity of Divisibility

For all integers a, b and c, if a | b and b | c, then a | c.

Proof:

- 1. Suppose *a*, *b*, *c* are integers s.t. *a* | *b* and *b* | *c*.
 - 1.1 Then b = ar and c = bs for some integers r and s. (by the definition of divisibility)
 - 1.2 Then c = bs = (ar)s (by substitution) = a(rs) (by associativity)
 - 1.3 Let k = rs, then k is an integer (by closure property) and c = ak.
- 2. Therefore $a \mid c$.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
〇〇〇〇〇〇	O O O	● O	● ○

4.4 Indirect Proof

Direct Proof and Counterexample $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	Rational Numbers	Divisibility	Indirect Proof
	O O O	O O	● ○
Indirect Proof: Proof by Contradictic	n		

4.4.1. Indirect Proof: Proof by Contradiction

Sometimes when a direct proof is hard to derive, we can try indirect proof.

Example: Theorem 4.7.1 (5th: 4.8.1) $\sqrt{2}$ is irrational.

Proof by Contradiction

- 1. Suppose the statement to be proved, S, is false. That is, the negation of the statement, $\sim S$, is true.
- 2. Show that this supposition leads logically to a contradiction.
- 3. Conclude that the statement *S* is true.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 0	• •
Indirect Proof: Proof by Contradiction			

Theorem 4.6.1 (5th: 4.7.1)

There is no greatest integer.

Proof (by contradiction):

- 1. Suppose not, i.e. there is a greatest integer.
 - 1.1 Let call this greatest integer g, and $g \ge n$ for all integers n.
 - 1.2 Let G = g + 1.
 - 1.3 Now, G is an integer (closure of integers under +) and G > g.
 - 1.4 Hence, g is not the greatest integer \rightarrow contradicting 1.1.
- 2. Hence, the supposition that there is a greatest integer is false.
- 3. Therefore, there is no greatest integer.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 0	0

Indirect Proof: Proof by Contraposition

4.4.2. Indirect Proof: Proof by Contraposition

Recall: Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$.

Proof by Contraposition

- 1. Statement to be proved: $\forall x \in D(P(x) \rightarrow Q(x))$.
- 2. Rewrite the statement into its contrapositive form: $\forall x \in D (\sim Q(x) \rightarrow \sim P(x)).$
- 3. Prove the contrapositive statement by a direct proof.
 - 3.1 Suppose x is an (particular but arbitrarily chosen) element of D s.t. Q(x) is false.
 - 3.2 Show that P(x) is false.
- 4. Therefore, the original statement $\forall x \in D(P(x) \rightarrow Q(x))$ is true.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 0	\circ \bullet
Indirect Proof: Proof by Contraposition			

Recall that in Lecture 1, we use the following proposition to prove that $\sqrt{2}$ is irrational.

Proposition 4.6.4 (5th: 4.7.4)

For all integers n, if n^2 is even than n is even.

We shall now prove this proposition.

Direct Proof and Counterexample	Rational Numbers	Divisibility	Indirect Proof
00000	0 0 0	0 0	○ ●
Indirect Proof: Proof by Contraposition			

Proposition 4.6.4 (5th: 4.7.4)

For all integers n, if n^2 is even then n is even.

Proof (by contraposition):

1. Contrapositive statement:

For all integers n, if n is odd then n^2 is odd.

- 2. Let *n* be an arbitrarily chosen odd number.
 - 2.1 Then n = 2k + 1 for some integer k (by definition of odd number).
 - 2.2 Then $n^2 = (2k + 1)(2k + 1) = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 - 2.3 Let $m = 2k^2 + 2k$. Now, m is an integer (by closure property) and $n^2 = 2m + 1$.
 - 2.4 So n^2 is odd.
- 3. Therefore, for all integers n, if n^2 is even then n is even.

END OF FILE