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Mathematical Induction

 A very powerful method for showing a property is true for natural 
numbers (0, 1, 2, 3, …)

 It characterizes the natural numbers (by Dedekind-Peano axioms).

Importance of Mathematical Induction in Computer Science

 Mathematical induction (MI) plays a central role in discrete mathematics 
and computer science. It is a defining characteristics of discrete
mathematics.

 MI and recursion are closely linked. Hence, proof of correctness for 
recursive algorithms are usually done with MI.

 Natural generalizations of induction characterize recursively defined 
objects.
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8. Mathematical Induction

Sequences Mathematical Induction I Mathematical Induction II Well-Ordering Principle Recurrence Relations

Reference: Epp’s Chapter 5 Sequences, Mathematical Induction 
and Recursion

8.1 Sequences

• Definitions: Sequence, term, explicit formula. Sequence Builders.

• Summation notation; product notation; properties of summations and products.

• Change of variable; some common sequences.

8.2 Mathematical Induction I

• Principle of mathematical induction

• Examples: Sum of first n integers, sum of a geometric sequence

8.3 Mathematical Induction II

• Strong mathematical induction

• Example: Any integer > 1 is divisible by a prime number

8.4 Well-Ordering Principle

• Well-ordering principle for the integers

8.5 Recurrence Relations

• Definition

• Recursively defined sets

• Structural induction
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8.1 Sequences
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5.1 Sequences

Sequences: Definitions

8.1.1. Definitions

Definitions: Sequence and Terms

A sequence is an ordered set with members called terms.
Usually, the terms are numbers. A sequence may have 
infinite terms. 

Examples:

 1, 2, 4, 8, 16.

 5, 8, 11, 14, 17, …


1

2
,
−3

4
,
5

8
,
−7

16
,
9

32
, …

General form:
𝑎𝑚, 𝑎𝑚+1, 𝑎𝑚+2, ⋯ , 𝑎𝑛

where 𝑚 ≤ 𝑛. 
The 𝑘 in 𝑎𝑘is called a subscript or index.

Infinite sequence:
𝑎𝑚, 𝑎𝑚+1, 𝑎𝑚+2, ⋯
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5.1 Sequences

Sequences: Closed-form Formula

An explicit formula for a sequence is a rule that shows 
how the values of 𝑎𝑘 depend on 𝑘.  

Example #1: Compute the first 5 terms of the sequence: 

𝑎𝑘 =
𝑘

𝑘+1
for all integers 𝑘 ≥ 1.



𝑎1 =
1

2
; 𝑎2 =

2

3
; 𝑎3 =

3

4
; 𝑎4 =

4

5
; 𝑎5 =

5

6
.

Does the following formula define the same sequence?

𝑏𝑘−1 =
𝑘−1

𝑘
for all integers 𝑘 ≥ 2. Yes.



Explicit Formula vs Seq Comprehension

Explicit Formula
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Sequence Comprehension

𝑎 =  [ (k/k+1) : k  [1..] ]  

𝑎𝑘 =
𝑘

𝑘+1
for all integers 𝑘 ≥ 1.

𝑎1 . 𝑎2 . 𝑎3 …

seq element separator

Type Signature:  Seq(Q) = ([1,)  Q)



Sequence Equivalence
Explicit Formula
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𝑏𝑘−1 =
𝑘−1

𝑘
for all integers 𝑘 ≥ 2.

Are the two sequences a=b equal? 

[ (k/k+1) : k  [1..] ]  = [ (k-1/k) : k  [2..] ]  

Sequence Comprehension 
𝑏 =  [ (k-1/k) : k  [2..] ]  

𝑎 =  [ (k/k+1) : k  [1..] ]  

can add indexes if needed
for higher fidelity to explicit form

𝑎𝑘 =
𝑘

𝑘+1
for all integers 𝑘 ≥ 1.



Set Comprehension
Set Builder
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{k  U : R(x)} : P(U)  

order not important, duplicates discarded

R : U  Bool

Set Comprehension (an example)
{ f(k1,k2) : k1  S1, k2  S1, R(k1, k2)} : P(S3)  

R : S1 x S2  Bool f : S1 x S2  S3

One replacement,  multiple generators and multiple predicates

predicate

f : S  B

Set Replacement

{ f(k) : k  S} : P(B)  

generatorreplacement

(Zermelo–Fraenkel set theory)
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Sequences: Summation Notation

Sometimes we would want to sum up the terms in a 
sequence, i.e. 𝑎𝑚 + 𝑎𝑚+1 + 𝑎𝑚+2 +⋯+ 𝑎𝑛.

8.1.2. Summation Notation

Definition: Summation

If 𝑚 and 𝑛 are integers, 𝑚 ≤ 𝑛, the symbol



𝑘=𝑚

𝑛

𝑎𝑘

is the sum of all the terms 𝑎𝑚, 𝑎𝑚+1, 𝑎𝑚+2, ⋯ , 𝑎𝑛.

We say that 𝑎𝑚 + 𝑎𝑚+1 + 𝑎𝑚+2 +⋯+ 𝑎𝑛 is the expanded 
form of the sum, and we write

σ𝑘=𝑚
𝑛 𝑎𝑘 = 𝑎𝑚 + 𝑎𝑚+1 + 𝑎𝑚+2 +⋯+ 𝑎𝑛.

We call 𝑘 the index of the summation, 𝑚 the lower limit of 
the summation and 𝑛 the upper limit of the summation.
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Sequences: Summation Notation

Example #2: Write the following summation in 
expanded form:



𝑖=0

𝑛
(−1)𝑖

𝑖 + 1
=
(−1)0

0 + 1
+
(−1)1

1 + 1
+
(−1)2

2 + 1
+
(−1)3

3 + 1
+⋯+

−1 𝑛

𝑛 + 1

=
1

1
+

−1

2
+

1

3
+

−1

4
+⋯+

(−1)𝑛

𝑛+1
= 1 −

1

2
+

1

3
−

1

4
+⋯+

(−1)𝑛

𝑛+1



𝑖=0

𝑛
(−1)𝑖

𝑖 + 1



Example #3: Express the following expanded form 
using summation notation:

1

𝑛
+

2

𝑛 + 1
+

3

𝑛 + 2
+⋯+

𝑛 + 1

2𝑛



𝑘=0

𝑛
𝑘 + 1

𝑛 + 𝑘
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Sequences: Summation Notation

Summation can be expressed using recursive definition.

If 𝑚 is any integer, then



𝑘=𝑚

𝑚

𝑎𝑘 = 𝑎𝑚 and



𝑘=𝑚

𝑛

𝑎𝑘 = 

𝑘=𝑚

𝑛−1

𝑎𝑘 + 𝑎𝑛 for all integers 𝑛 > 𝑚.

By convention, an empty sum (eg: σ𝑘=𝑚
𝑛 𝑎𝑘

where 𝑚 > 𝑛) is equal to the additive identity 0.
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Sequences: Summation Notation

Some sums can be transformed into telescoping sums, 
which then can be rewritten as a simple expression.

Use the above to find a simple expression for

Example #4: Observe that
1

𝑘
−

1

𝑘 + 1
=

𝑘 + 1 − 𝑘

𝑘 𝑘 + 1
=

1

𝑘 𝑘 + 1
.



𝑘=1

𝑛
1

𝑘(𝑘 + 1)



𝑘=1

𝑛
1

𝑘(𝑘 + 1)
= 

𝑘=1

𝑛
1

𝑘
−

1

𝑘 + 1

=
1

1
−

1

2
+

1

2
−

1

3
+

1

3
−

1

4
+ ⋯+

1

𝑛−1
−

1

𝑛
+

1

𝑛
−

1

𝑛+1

= 1 −
1

𝑛+1
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Sequences: Product Notation

The notation for the product of a sequence of numbers 
is analogous to the notation for their sum.

8.1.3. Product Notation

Definition: Product

If 𝑚 and 𝑛 are integers, 𝑚 ≤ 𝑛, the symbol

ෑ

𝑘=𝑚

𝑛

𝑎𝑘

is the product of all the terms 𝑎𝑚, 𝑎𝑚+1, 𝑎𝑚+2, ⋯ , 𝑎𝑛.

We write

ς𝑘=𝑚
𝑛 𝑎𝑘 = 𝑎𝑚 ∙ 𝑎𝑚+1 ∙ 𝑎𝑚+2 ∙ ⋯ ∙ 𝑎𝑛.
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Sequences: Product Notation

Recursive definition for the product notation:
If 𝑚 is any integer, then

ෑ

𝑘=𝑚

𝑚

𝑎𝑘 = 𝑎𝑚 and

ෑ

𝑘=𝑚

𝑛

𝑎𝑘 = ෑ

𝑘=𝑚

𝑛−1

𝑎𝑘 ∙ 𝑎𝑛 for all integers 𝑛 > 𝑚.

By convention, an empty product (eg: ς𝑘=𝑚
𝑛 𝑎𝑘

where 𝑚 > 𝑛) is equal to the multiplicative identity 1.
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Sequences: Product Notation

Example #5: Compute the product ෑ

𝑘=1

5

(𝑘 + 2)

ෑ

𝑘=1

5

(𝑘 + 2) = 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7 = 2520
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Sequences: Properties of Summations and Products

8.1.4. Properties of Summations and Products

Theorem 5.1.1 

If 𝑎𝑚, 𝑎𝑚+1, 𝑎𝑚+2, ⋯ and 𝑏𝑚, 𝑏𝑚+1, 𝑏𝑚+2, ⋯ are sequences of real 
numbers and 𝑐 is any real number , then the following equations hold 
for any integer 𝑛 ≥ 𝑚:

1.

2.

3.



𝑘=𝑚

𝑛

𝑎𝑘 + 

𝑘=𝑚

𝑛

𝑏𝑘 = 

𝑘=𝑚

𝑛

(𝑎𝑘 + 𝑏𝑘)

𝑐 ∙ 

𝑘=𝑚

𝑛

𝑎𝑘 = 

𝑘=𝑚

𝑛

𝑐 ∙ 𝑎𝑘 (generalized distributive law)

ෑ

𝑘=𝑚

𝑛

𝑎𝑘 ∙ ෑ

𝑘=𝑚

𝑛

𝑏𝑘 = ෑ

𝑘=𝑚

𝑛

𝑎𝑘 ∙ 𝑏𝑘
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Sequences: Properties of Summations and Products

Example #6: Let 𝑎𝑘 = 𝑘 + 1 and 𝑏𝑘 = 𝑘 − 1 for all integers 𝑘.

Write the following as a single summation.

(a) 
𝑘=𝑚

𝑛

𝑎𝑘 + 2 ∙ 

𝑘=𝑚

𝑛

𝑏𝑘 = 

𝑘=𝑚

𝑛

(𝑘 + 1) + 2 ∙ 

𝑘=𝑚

𝑛

(𝑘 − 1)

= 

𝑘=𝑚

𝑛

(𝑘 + 1) + 

𝑘=𝑚

𝑛

2 ∙ (𝑘 − 1)

= 

𝑘=𝑚

𝑛

𝑘 + 1 + 2 ∙ 𝑘 − 1

= 

𝑘=𝑚

𝑛

(3𝑘 − 1)

(by substitution)

(by Theorem 5.1.1 (2))

(by Theorem 5.1.1 (1))

(by basic algebra)
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Sequences: Properties of Summations and Products

Example #6: Let 𝑎𝑘 = 𝑘 + 1 and 𝑏𝑘 = 𝑘 − 1 for all integers 𝑘.

Write the following as a single product.

(b) ෑ

𝑘=𝑚

𝑛

𝑎𝑘 ∙ ෑ

𝑘=𝑚

𝑛

𝑏𝑘

= ෑ

𝑘=𝑚

𝑛

(𝑘 + 1) ∙ ෑ

𝑘=𝑚

𝑛

(𝑘 − 1)

= ෑ

𝑘=𝑚

𝑛

(𝑘 + 1) ∙ (𝑘 − 1)

= ෑ

𝑘=𝑚

𝑛

𝑘2 − 1

(by substitution)

(by Theorem 5.1.1 (3))

(by basic algebra)
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Sequences: Change of Variable

8.1.5. Change of Variable



𝑘=1

3

𝑘2 =

𝑖=1

3

𝑖2 = 

𝑘=3

5

(𝑘 − 2)2

Dummy variables

Example #7: Transform the following summation by 
changing the range of 𝑘 from [1, 𝑛 + 1] to [0, 𝑛].



𝑘=1

𝑛+1
𝑘

𝑛 + 𝑘
= 

𝑘=0

𝑛
𝑘 + 1

𝑛 + 𝑘 + 1
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Sequences: Some Common Sequences

8.1.6. Some Common Sequences

𝑑 is the common difference, 𝑎0
the initial value.

Examples:

 1, 5, 9, 13, 17, …

 12, 7, 2, -3, -8, -13, …

Summing an arithmetic sequence 
of 𝑛 terms:



𝑘=0

𝑛−1

𝑎𝑘 =
𝑛

2
2𝑎0 + 𝑛 − 1 𝑑

Definition: Arithmetic Sequence

A sequence 𝑎0, 𝑎1, 𝑎2 , ⋯ is called an arithmetic sequence (or 
arithmetic progression) iff there is a constant 𝑑 such that

𝑎𝑘 = 𝑎𝑘−1 + 𝑑 for all integers 𝑘 ≥ 1.
It follows that,

𝑎𝑛 = 𝑎0 + 𝑑𝑛 for all integers 𝑛 ≥ 0.
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Sequences: Some Common Sequences

𝑟 is the common ratio, 𝑎0 the 
initial value.

Examples:

 1, 3, 9, 27, 81, …

 8, 4, 2, 1, ½, ¼, …

Summing a geometric sequence 
of 𝑛 terms (𝑟 ≠ 1), 



𝑘=0

𝑛−1

𝑎𝑘 = 𝑎0
1 − 𝑟𝑛

1 − 𝑟

Definition: Geometric Sequence

A sequence 𝑎0, 𝑎1, 𝑎2 , ⋯ is called a geometric sequence (or 
geometric progression) iff there is a constant 𝑟 such that

𝑎𝑘 = 𝑟𝑎𝑘−1 for all integers 𝑘 ≥ 1.
It follows that,

𝑎𝑛 = 𝑎0𝑟
𝑛 for all integers 𝑛 ≥ 0.
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Sequences: Some Common Sequences

Squares: 1, 4, 9, 16, 25, 36, 49, …

Triangle numbers: 1, 3, 6, 10, 15, 21, 28, …

Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

𝐹1 = 1
𝐹2 = 1

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 > 2

Lazy Caterer’s Sequence: 1, 2, 4, 7, 11, 16, …

(See AY2018/19 Semester 1 Exam Paper.)



Using Sequence Comprehension
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𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 =  [ tri(k) : k  [1..] ]  
tri(1) = 1
tri(n) = n+tri(n-1), n>1

𝑠𝑞𝑢𝑎𝑟𝑒𝑠 =  [ kk : k  [1..] ]  

𝑓𝑖𝑏𝑠 =  [ F(k) : k  [1..] ]  
F(1) = 1
F(2) = 1
F(n) = F(n-1)+F(n-2), n>2 

𝐿𝑎𝑧𝑦𝐶𝑎𝑡 =  [ cuts(k) : k  [0..] ]  cuts(k) =(k2+k+2)/2 
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8.2 Mathematical Induction I
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Mathematical Induction I

How do you prove that you 
can climb an infinite ladder, 
even though you would never 
reach the top?

26

8.2.1. Climbing an Infinite Ladder

Show that

(1) We can reach the first rung 
of the ladder;

(2) If we can reach a particular 
rung, we can reach the 
next higher rung.
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Mathematical Induction I
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Note that in general, the basis step needs not be 
𝑃 1 ; it can be 𝑃(𝑎) where 𝑎 is a fixed integer.

Principle of Mathematical Induction

To prove that 𝑃(𝑛) is true for all 𝑛 ∈ ℤ+:

 Basis step: Show that 𝑃(1) is true.

 Inductive step: Show that
𝑃 𝑘 ⇒ 𝑃 𝑘 + 1 for all 𝑘 ∈ ℤ+.

 Therefore 𝑃(𝑛) is true for all 𝑛 ∈ ℤ+.

Inductive 
hypothesis
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Mathematical Induction I
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The validity of proof by mathematical induction is generally 
taken as an axiom. That is why it is referred to as the principle of 
mathematical induction rather than as a theorem. We may use 
PMI as a short-form for Principle of Mathematical Induction.

Principle of Mathematical Induction (PMI)

Let 𝑃(𝑛) be a property that is defined for integers 𝑛, and let 𝑎
be a fixed integer. Suppose the following 2 statements are true:

1. 𝑃(𝑎) is true.

2. For all integers 𝑘 ≥ 𝑎, if 𝑃(𝑘) is true then 𝑃(𝑘 + 1) is true.

Then the statement “for all integers 𝑛 ≥ 𝑎, 𝑃(𝑛)” is true.

8.2.2. Principle of Mathematical Induction (PMI)
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Mathematical Induction I
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Proving a statement by mathematical induction is a        
two-step process. The first step is called the basis step, 
and the second step is called the inductive step.



P(𝑎)
k ≥ 𝑎. P(k)  P(k+1)
k ≥ 𝑎. P(k)

intended conclusion

base step (proof)

inductive step (proof)

This is usually taken as an axiom/principle rather 
than a theorem? Why is this not a theorem?

P(𝑎)
P(a)  P(a+1)
P(a+1)  P(a+2)
P(a+2)  P(a+3)

:
k ≥ 𝑎. P(k)

- Structural Inductive Proof
- Based on data construction 

N ::= 0 | N+1
- Good reason for proof to hold

Induction Principle
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P(𝑎)
k ≥ 𝑎, P(k)  P(k+1)
k ≥ 𝑎, P(k)

intended conclusion

base step (proof)

inductive step (proof)

Suppose k ≥ 𝑎 P(k)
: 

P(k+1)

assume induction
hypothesis P(k)

Prove P(k+1)

Sub-Goal to Prove

 k ≥ 𝑎 P(k)  P(k+1)

Proof Rules



Sequences Mathematical Induction I Mathematical Induction II Well-Ordering Principle Recurrence Relations

Mathematical Induction I: Sum of the First 𝑛 Integers
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Example #8: Use mathematical induction to prove

Proof (by mathematical induction):

1. Let 𝑃 𝑛 ≡ 1 + 2 +⋯+ 𝑛 =
𝑛 𝑛+1

2
, ∀𝑛 ∈ ℤ+. (Set up predicate.)

2. Basis step: 1 =
1(1+1)

2
, therefore 𝑃(1) is true.

3. Assume 𝑃(𝑘) is true for some 𝑘 ≥ 1. That is,

1 + 2 + ⋯+ 𝑘 =
𝑘(𝑘 + 1)

2
4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)

4.1. 1 + 2 +⋯+ 𝑘 + 𝑘 + 1 =
𝑘 𝑘+1

2
+ 𝑘 + 1 =

𝑘+1 𝑘+1 +1

2

4.2. Therefore 𝑃(𝑘 + 1) is true.
5. (We have proved 𝑃(1) and 𝑘 ≥ 1 𝑃(𝑘) → 𝑃(𝑘 + 1))

Therefore, 𝑃(𝑛) is true for 𝑛 ∈ ℤ+.

Text in green are 
comments that may 
be omitted in your 
solution.

How we make 
use of 𝑃(𝑘).

Theorem 5.2.2 (5th: 5.2.1) Sum of the First 𝑛 Integers 

For all integers 𝑛 ≥ 1,

1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛+1)

2

P(1)

k ≥ 1. P(k)  P(k+1)
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Mathematical Induction I: Closed Form
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Example: 
𝑛(𝑛+1)

2
is the closed form formula for 1 + 2 + 3 + ⋯+ 𝑛.

Definition: Closed Form

If a sum with a variable number of terms is shown to be equal 
to a formula that does not contain either an ellipsis (…) or a 
summation symbol (), we say that it is written in closed form.
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Mathematical Induction I: Sum of a Geometric Sequence
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Example #9: Use mathematical induction to prove

Proof (by mathematical induction):

1. Let 𝑃 𝑛 ≡ σ𝑖=0
𝑛 𝑟𝑖 =

𝑟𝑛+1−1

𝑟−1
, 𝑟 ≠ 1, 𝑛 ≥ 0. (Set up predicate.)

2. Basis step: 𝑟0 = 1 =
𝑟1−1

𝑟−1
, therefore 𝑃(0) is true.

3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 0. That is, σ𝑖=0
𝑘 𝑟𝑖 =

𝑟𝑘+1−1

𝑟−1

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)

4.1. σ𝑖=0
𝑘+1 𝑟𝑖 = σ𝑖=0

𝑘 𝑟𝑖 + 𝑟𝑘+1 =
𝑟𝑘+1−1

𝑟−1
+ 𝑟𝑘+1 =

𝑟𝑘+1−1+𝑟𝑘+1(𝑟−1)

𝑟−1

=
𝑟 𝑘+1 +1 −1

𝑟−1

4.2. Therefore 𝑃(𝑘 + 1) is true.
5. Therefore, 𝑃(𝑛) is true for 𝑛 ≥ 0.

Theorem 5.2.3 (5th: 5.2.2) Sum of a Geometric Sequence
For any real number 𝑟 ≠ 1, and any integers 𝑛 ≥ 0,



𝑖=0

𝑛

𝑟𝑖 =
𝑟𝑛+1 − 1

𝑟 − 1

P(0)

k ≥ 0. P(k)  P(k+1)
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Example #10: Use mathematical induction to prove

Proof (by mathematical induction):
1. Let 𝑃 𝑛 ≡ 3 (22𝑛 − 1)) for all integers 𝑛 ≥ 0.
2. Basis step: 22∙0 − 1 = 0 is divisible by 3, therefore 𝑃(0) is 

true.
3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 0. That is, 3|(22𝑘 − 1).

3.1 This means that 22𝑘 − 1 = 3𝑟 for some integer 𝑟 (by defn of divisibility).

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)
4.1. 22(𝑘+1) − 1 = 22𝑘 ∙ 4 − 1 = 22𝑘 ∙ (3 + 1) − 1 = 22𝑘 ∙ 3 + (22𝑘 − 1)

= 22𝑘 ∙ 3 + 3𝑟 = 3(22𝑘 + 𝑟)

4.2. Since 3|(22(𝑘+1) − 1), therefore 𝑃(𝑘 + 1) is true.

5. Therefore, 𝑃(𝑛) is true for all integers 𝑛 ≥ 0.

Proposition 5.3.1 (5th: 5.3.2)

For all integers 𝑛 ≥ 0, 22𝑛 − 1 is divisible by 3.



P(0)

k ≥ 0. P(k)  P(k+1)
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Example #11: Use mathematical induction to prove

Proof (by mathematical induction):
1. Let 𝑃 𝑛 ≡ 2𝑛 + 1 < 2𝑛 , ∀𝑛 ∈ ℤ≥3.

2. Basis step: 2 ∙ 3 + 1 = 7 < 8 = 23, therefore 𝑃(3) is true.

3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 3. That is, 2𝑘 + 1 < 2𝑘.

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)
4.1. 𝟐 𝒌 + 𝟏 + 𝟏 = 2𝑘 + 3 = 2𝑘 + 1 + 2 < 2𝑘 + 2 < 2𝑘 + 2𝑘 = 𝟐𝒌+𝟏

(because 2 < 2𝑘 for all integers 𝑘 ≥ 2)
4.2. Therefore 𝑃(𝑘 + 1) is true.

5. Therefore, 𝑃(𝑛) is true for all integers 𝑛 ≥ 3.

Proposition 5.3.2 (5th: 5.3.3)

For all integers 𝑛 ≥ 3, 2𝑛 + 1 < 2𝑛.



P(3)

k ≥ 3. P(k)  P(k+1)
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Example #12: A Negative Example

Claim: All cows have the same colour.
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Example #12: A Negative Example

Claim: All cows have the same colour.

Proof (by mathematical induction):
1. Let 𝑃 𝑛 ≡ (Any group of 𝑛 cows have the same colour), ∀𝑛 ∈ ℤ+

2. Basis step: Clearly, a single cow has one colour, so 𝑃(1) is true.

3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 1.

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)
4.1. In any group of 𝑘 + 1 cows, number them from 1 to 𝑘 + 1.
4.2. Then cows #1 to #𝑘 form a group of 𝑘 cows, which have the same colour by the 

Inductive Hypothesis.
4.3. Similarly, cows #2 to #𝑘 + 1 have the same colour.
4.4. Now, cows #2 to #𝑘 are common to both groups, and cows don’t change 

colour!
4.5. Thus cow #𝑘 + 1 has the same colour as cow #1, which means all (𝑘 + 1) cows 

have the same colour.
4.6. Therefore, 𝑃(𝑘 + 1) is true.

5. Therefore, 𝑃(𝑛) is true, i.e., all cows have the same colour!

What is wrong with 
this proof?

P(1)

P({#1..#k})  P({#2..#k+1})  k2 P({#1..#k+1})
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P(1)
k ≥ 1, P(k)  P(k+1)
k ≥ 1, P(k)

regular induction over Nat

P(1)
k ≥ 2, P({#1..#k})  P({#2..#k+1})   P({#1..#k+1}) 
k ≥ 𝑎, P(k)
wrong induction scheme
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Mathematical induction is not restricted to proving formulas.

Example #13: For 𝑛 ∈ ℤ+, any 2𝑛 × 2𝑛 board with one square 
removed can be tiled by L-trominoes.

2𝑘+1

2𝑘

L-tromino

Proof (by mathematical induction):
1. Let 𝑃 𝑛 ≡ (2𝑛 × 2𝑛 board with one square removed can be tiled by L-

trominoes), ∀𝑛 ∈ ℤ+.
2. Basis step: 𝑃(1) is true as such a board is an L-tromino.
3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 1.
4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)
4.1.Let 𝐵 be a 2𝑘+1 × 2𝑘+1 board with one square removed.
4.2.Divide 𝐵 into four 2𝑘 × 2𝑘 quadrants.
4.3.Let 𝑄 be the quadrant containing the removed square.
4.4.Remove one L-tromino from the centre of 𝐵 such that each quadrant 

other than 𝑄 has one square removed.
4.5.We have four 2𝑘 × 2𝑘 quadrants, each with one square removed.
4.6.By the induction hypotheses, each quadrant can be tiled by L-trominoes.
4.7.Therefore, 𝑃(𝑘 + 1) is true.

5. Therefore ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true.

P(1)

P(n)P(n)P(n)P(n) k1 P(k+1)
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Exercise: This is a past year’s assignment 
question. Discuss on the Canvas forum or QnA.

𝑛 red balls and 𝑛 blue balls (𝑛 > 0) are arranged to form a 
circle. You walk around the circle exactly once in a clockwise 
direction and count the number of red and blue balls you 
pass. If at all times during your walk, the number of red balls 
(that you have passed) is greater than or equal to the 
number of blue balls (that you have passed), then your trip is 
said to be successful. (Note that whether successful or not, 
you will pass exactly 2𝑛 balls after walking one round.)

Define 𝑃 𝑛 ≡ (In any circle formed by 𝑛 red and 𝑛 blue 
balls, there exists a successful trip), ∀𝑛 ∈ ℤ+.

Prove by mathematical induction that you can always make a 
successful trip if you can choose where you start.
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8.3 Mathematical Induction II
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Mathematical Induction II

8.3.1. Strong Mathematical Induction
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Mathematical Induction II

Comparison between “weak” and “strong” induction.
Let 𝑃(𝑛) denotes the property on all integers 𝑛 ≥ 𝑎. 

Weak (regular) induction (or 1PI)
If
 𝑃(𝑎) holds
 For every 𝑘 ≥ 𝑎, 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

Then 𝑃(𝑛) holds for all 𝑛 ≥ 𝑎.

Strong induction (or 2PI)
If
 𝑃(𝑎) holds

 For every 𝑘 ≥ 𝑎, 𝑃 𝑎 ∧ 𝑃 𝑎 + 1 ∧ ⋯∧ 𝑃 𝑘 ⇒ 𝑃 𝑘 + 1

Then 𝑃(𝑛) holds for all 𝑛 ≥ 𝑎.

We may prove strong induction from weak and 
weak induction from strong (proofs omitted).
This means both types of induction are equal in 
“power”.

Hence, using more neutral terms, we can 
call the regular/strong versions the First 
Principle of Mathematical Induction (1PI) 
and Second Principle of Mathematical 
Induction (2PI) respectively.

Strong induction (or 2PI) (variation – other variations possible)
If
 𝑃 𝑎 , 𝑃 𝑎 + 1 , … , 𝑃(𝑏) hold
 For every 𝑘 ≥ 𝑏, 𝑃 𝑘 ⇒ 𝑃 𝑘 + 𝑏 − 𝑎 + 1

Then 𝑃(𝑛) holds for all 𝑛 ≥ 𝑎. 44
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P(𝑎)
k ≥ 𝑎, P(k)  P(k+1)
k ≥ 𝑎, P(k)

regular induction (or 1PI)

P(𝑎)
k ≥ 𝑎, P(a)  P(a+1)  ..  P(k)  P(k+1)
k ≥ 𝑎, P(k)
strong induction (or 2PI)

P(a)  P(a+1)  ..  P(b) 
k ≥ 𝑏, P(k)  P(k+b-a+1)
k ≥ 𝑎, P(k)
strong induction (or 2PI) variation
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Mathematical Induction II: Any integer > 1 is divisible by a prime number

Exercise #14: Prove that 
Any integer > 1 is divisible by a prime number.

Idea: If a given integer greater than 1 is not itself prime, then it 
is a product of two smaller positive integers, each of which is 
greater than 1. 

Since you are assuming that each of these smaller integers is 
divisible by some prime number, by transitivity of divisibility, 
those prime numbers also divide the integer you started with.

Theorem 4.3.3 (5th: 4.4.3) Transitivity of Divisibility

For all integers 𝑎, 𝑏 and 𝑐, if 𝑎 | 𝑏 and 𝑏 | 𝑐, then 𝑎 | 𝑐.



Sequences Mathematical Induction I Mathematical Induction II Well-Ordering Principle Recurrence Relations

47

Mathematical Induction II: Any integer > 1 is divisible by a prime number

Prove: Any integer greater than 1 is divisible by a prime number.

Proof (by 2PI):
1. Let 𝑃 𝑛 ≡ (𝑛 is divisible by a prime), for 𝑛 > 1.

2. Basis step:  𝑃(2) is true since 2 is divisible by 2.

3. Inductive step: To show that for all integers 𝑘 ≥ 2, if 𝑃(𝑖) is true for all 
integers 𝑖 from 2 through 𝑘, then 𝑃(𝑘 + 1) is also true.
3.1. Case 1 (𝑘 + 1 is prime): In this case 𝑘 + 1 is divisible by a prime 

number which is itself.

3.2. Case 2 (𝑘 + 1 is not prime): In this case 𝑘 + 1 = 𝑎𝑏 where 𝑎 and 𝑏 are 
integers with 1 < 𝑎 < 𝑘 + 1 and 1 < 𝑏 < 𝑘 + 1.

3.2.1. Thus, in particular, 2  𝑎  𝑘 and so by inductive hypothesis, 𝑎 is 
divisible by a prime number 𝑝.

3.2.2. In addition, because 𝑘 + 1 = 𝑎𝑏, so 𝑘 + 1 is divisible by 𝑎.

3.2.3. By transitivity of divisibility, 𝑘 + 1 is divisible by a prime 𝑝.

4. Therefore any integer greater than 1 is divisible by a prime.
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Mathematical Induction II: Any amount ≥ $12 can be formed by a combination of $4 and $5 coins 

Example #15: Use 1PI to prove that any whole amount of ≥ $12 can 
be formed by a combination of $4 and $5 coins. 

Proof (by 1PI):
1. Let 𝑃 𝑛 ≡ (the amount of $𝑛 can be formed by $4 and $5 coins)  for 𝑛 ≥ 12.

2. Basis step: 12 = 3 × 4, so three $4 can be used. Therefore 𝑃(12) is true.

3. Assume 𝑃(𝑘) is true for 𝑘 ≥ 12.

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)

4.1. Case 1: If a $4 coin is used for $𝑘 amount, replace it by a $5 coin to 
make $(𝑘 + 1).

4.2. Case 2: If no $4 coin is used for $𝑘 amount, then 𝑘 ≥ 15, so there must 
be at least three $5 coins. We can then replace three $5 coins with four 
$4 coins to make $(𝑘 + 1).

4.3. In both cases, 𝑃(𝑘 + 1) is true.

5. Therefore, 𝑃(𝑛) is true for 𝑛 ≥ 12.
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Mathematical Induction II: Any amount ≥ $12 can be formed by a combination of $4 and $5 coins 

Example #16: Use 2PI to prove that:
For all integers 𝑛 ≥ 12, 𝑛 = 4𝑎 + 5𝑏 for some 𝑎, 𝑏 ∈ ℕ.

Proof (by 2PI):
1. Let 𝑃 𝑛 ≡ 𝑛 = 4𝑎 + 5𝑏 , for some 𝑎, 𝑏 ∈ ℕ, 𝑛 ≥ 12.

2. Basis step: Show that 𝑃 12 , 𝑃 13 , 𝑃 14 , 𝑃(15) hold.
12 = 4 ∙ 3 + 5 ∙ 0; 13 = 4 ∙ 2 + 5 ∙ 1; 14 = 4 ∙ 1 + 5 ∙ 2; 15 = 4 ∙ 0 + 5 ∙ 3;

3. Assume 𝑃(𝑖) holds for 12 ≤ 𝑖 ≤ 𝑘 given some  𝑘 ≥ 15.

4. Inductive step: (To show 𝑃(𝑘 + 1) is true.)

4.1. 𝑃(𝑘 − 3) holds  (by induction hypothesis), 

so, 𝑘 − 3 = 4𝑎 + 5𝑏 for some 𝑎, 𝑏 ∈ ℕ

4.2. 𝑘 + 1 = 𝑘 − 3 + 4 = 4𝑎 + 5𝑏 + 4 = 4 𝑎 + 1 + 5𝑏

4.3. Hence, 𝑃(𝑘 + 1) is true.

5. Therefore, 𝑃(𝑛) is true for 𝑛 ≥ 12.

This is the same problem as Example #15.

k ≥ 15. P(k-3)  P(k+1)

P(12)  P(13) 
 P(14)  P(15) 
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8.4 Well-Ordering Principle
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Well-Ordering Principle

8.4.1. Well-Ordering Principle

The well-ordering principle for the integers looks very different from both 
the regular and the strong principles of mathematical induction, but it can 
be shown that all three principles are equivalent (proof omitted).

Well-Ordering Principle for the Integers

Every nonempty subset of ℤ≥0 has a smallest element.

Note: The above is the generally accepted (and well-known) definition of 
well-ordering principle. However, Epp’s definition extends the set to 
include possibly negative integers: “Let 𝑆 be a set of integers containing 
one or more integers all of which are greater than some fixed integer. 
Then 𝑆 has a least element.” We will stick with the above more generally 
accepted definition.

(For our purpose, we will focus on using Mathematical Induction.)
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Well-Ordering Principle

Well-Ordering Principle for Non-Negative Integers

Every nonempty subset of ℤ≥0 has a smallest element.

Proof (by contradiction):
1. Suppose not, i.e. let 𝑆 ⊆ ℤ≥0 be non-empty with no smallest element.

2. For each 𝑛 ∈ ℤ≥0, let 𝑃(𝑛) be the proposition “𝑛 ∉ 𝑆”.

3. Inductive step:
3.1. Let 𝑘 ∈ ℤ≥0 such that 𝑃 0 , 𝑃 1 ,⋯ , 𝑃(𝑘 − 1) are true, 

i.e., 0,1,⋯ , 𝑘 − 1 ∉ 𝑆.

3.2. If 𝑘 ∈ 𝑆, then 𝑘 is the smallest element of 𝑆 by the induction hypothesis 
as 𝑆 ⊆ ℤ≥0, which contradicts our assumption that 𝑆 has no smallest 
element

3.3. So 𝑘 ∉ 𝑆 and thus 𝑃(𝑘) is true.

4. Hence ∀𝑛 ∈ ℤ≥0 𝑃(𝑛) is true by 2PI.

5. This implies 𝑆 = ∅, contradicting line 1 that 𝑆 is non-empty.
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Well-Ordering Principle

Example #17: For each of the following, if the set has a least 
element, state what it is. If not, explain why the well-ordering 
principle is not violated.

a. The set of all positive real numbers.
b. The set of all nonnegative integers 𝑛 such that 𝑛2 < 𝑛.
c. The set of all nonnegative integers of the form 46 − 7𝑘, where 𝑘 is 

an integer.



a. There is no least positive real number.  If 𝑥 is any positive real number, 
then 𝑥/2 is a positive real number smaller than 𝑥.

The well-ordering principle is not violated because the principle refers 
only to sets of integers.

b. There is no least nonnegative integer 𝑛 such that 𝑛2 < 𝑛 because there 
is no nonnegative integer that satisfies this inequality.

The well-ordering principle is not violated because the principle refers 
only to non-empty sets.
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Well-Ordering Principle

Example #17: For each of the following, if the set has a least 
element, state what it is. If not, explain why the well-ordering 
principle is not violated.

a. The set of all positive real numbers.
b. The set of all nonnegative integers 𝑛 such that 𝑛2 < 𝑛.
c. The set of all nonnegative integers of the form 46 − 7𝑘, where 𝑘 is 

an integer.



c. Integers of the form 46 − 7𝑘 are …, -10, -3, 4, 11, 18, 25, 32, 46, …

So, 4 is the least nonnegative integer among them.
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8.5 Recurrence Relations
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Recurrence Relations

8.5.1. Definition

Definition

A recurrence relation for a sequence 𝑎0, 𝑎1, 𝑎2, ⋯ is a 
formula that relates each term 𝑎𝑘 to certain of its 
predecessors 𝑎𝑘−1, 𝑎𝑘−2, ⋯ , 𝑎𝑘−𝑖 , where 𝑖 is an integer 
with 𝑘 − 𝑖 ≥ 0.

If 𝑖 is a fixed integer , the initial conditions for such a 
recurrent relation specify the values of 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑖−1.

If 𝑖 depends on 𝑘, the initial conditions specify the values 
of 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑚, where 𝑚 is an integer with 𝑚 ≥ 0. 
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Recurrence Relations

Example #18: Recurrence relation for Fibonacci sequence 𝐹𝑛.

𝐹0 = 0
𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, for 𝑛 > 1

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Sometimes, we call such a definition a recursive definition.
Examples:
 Recursive definition of factorial:

0! = 1
𝑛! = 𝑛 ∙ 𝑛 − 1 ! for 𝑛 ≥ 1

 Recursive definition of power:
𝑎0 = 1
𝑎𝑛 = 𝑎𝑛−1 ∙ 𝑎 for 𝑛 ≥ 1
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Recurrence Relations

Recall the recursive definitions of summation and product in 
sections 5.1.2  and 5.1.3 respectively.



𝑘=𝑚

𝑛

𝑎𝑘 = 

𝑘=𝑚

𝑛−1

𝑎𝑘 + 𝑎𝑛 for all integers 𝑛 > 𝑚.

ෑ

𝑘=𝑚

𝑛

𝑎𝑘 = ෑ

𝑘=𝑚

𝑛−1

𝑎𝑘 ∙ 𝑎𝑛 for all integers 𝑛 > 𝑚.

The recursive definitions are used with mathematical induction 
to establish various properties of general finite sums and 
products.
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Recurrence Relations

Example #19: Prove that for any positive integer 𝑛, if 𝑎1, 𝑎2, ⋯ , 𝑎𝑛
and 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 are real numbers, then



𝑖=1

𝑛

𝑎𝑖 + 𝑏𝑖 =

𝑖=1

𝑛

𝑎𝑖 +

𝑖=1

𝑛

𝑏𝑖 .

Proof (by mathematical induction):
1. Let 𝑃 𝑛 = σ𝑖=1

𝑛 𝑎𝑖 + 𝑏𝑖 = σ𝑖=1
𝑛 𝑎𝑖 +σ𝑖=1

𝑛 𝑏𝑖 , for 𝑛 ≥ 1.

2. Basis step:  𝑃(1) is true since

σ𝑖=1
1 𝑎𝑖 + 𝑏𝑖 = 𝑎1 + 𝑏1 = σ𝑖=1

1 𝑎𝑖 + σ𝑖=1
1 𝑏𝑖.

3. Inductive hypothesis: for some 𝑘 ≥ 1,

σ𝑖=1
𝑘 𝑎𝑖 + 𝑏𝑖 = σ𝑖=1

𝑘 𝑎𝑖 + σ𝑖=1
𝑘 𝑏𝑖.

4. Inductive step: 

σ𝑖=1
𝑘+1 𝑎𝑖 + 𝑏𝑖 = σ𝑖=1

𝑘 𝑎𝑖 + 𝑏𝑖 + 𝑎𝑘+1 + 𝑏𝑘+1 (by definition of σ)

= σ𝑖=1
𝑘 𝑎𝑖 + σ𝑖=1

𝑘 𝑏𝑖 + 𝑎𝑘+1 + 𝑏𝑘+1 (by inductive hypothesis)

= ⋯

8.5.2. Example
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Recurrence Relations

Example #20: Prove that for any positive integer 𝑛, if 𝑎1, 𝑎2, ⋯ , 𝑎𝑛
and 𝑏1, 𝑏2, ⋯ , 𝑏𝑛 are real numbers, then

4. Inductive step: 

σ𝑖=1
𝑘+1 𝑎𝑖 + 𝑏𝑖 = σ𝑖=1

𝑘 𝑎𝑖 + 𝑏𝑖 + 𝑎𝑘+1 + 𝑏𝑘+1 (by definition of σ)

= σ𝑖=1
𝑘 𝑎𝑖 + σ𝑖=1

𝑘 𝑏𝑖 + 𝑎𝑘+1 + 𝑏𝑘+1 (by inductive hypothesis)

= σ𝑖=1
𝑘 𝑎𝑖 + 𝑎𝑘+1 + σ𝑖=1

𝑘 𝑏𝑖 + 𝑏𝑘+1 (by the associative and

commutative laws of algebra)

= σ𝑖=1
𝑘+1𝑎𝑖 + σ𝑖=1

𝑘+1 𝑏𝑖 (by definition of σ)

Therefore 𝑃(𝑘 + 1) is true.

5. Therefore 𝑃(𝑛) is true for any positive integer 𝑛.



𝑖=1

𝑛

𝑎𝑖 + 𝑏𝑖 =

𝑖=1

𝑛

𝑎𝑖 +

𝑖=1

𝑛

𝑏𝑖 .
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Recursively Defined Sets

8.5.3. Recursively Defined Sets

Definition

Let 𝑆 be a finite set with at least one element. A string 
over 𝑆 is a finite sequence of elements from S. The 
elements of S are called characters of the string, and the 
length of a string is the number of characters it contains. 
The null string over 𝑆 is defined to be the “string” with no 
characters. It is usually denoted 𝜖 and is said to have 
length 0.

S = {c1,.., cn}

Str(S) ::=  |  c.Str(S) st c  S 
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Recursively Defined Sets

Example #21: Certain configurations of parentheses in algebraic 
expressions are legal [such as (())() and ()()()], whereas others are 
not [such as (())) and ())()(].

Here is a recursive definition to generate the set 𝑃 of legal 
configurations of parentheses.

I. Base: () is in 𝑃.

II. Recursion:
a. If 𝐸 is in 𝑃, so is (𝐸).

b. If 𝐸 and 𝐹 are in 𝑃, so is 𝐸𝐹.

III. Restriction: No configurations of parentheses 
are in 𝑃 other than those derived from 1 and 2 
above.

Derive the fact that (())() is in 𝑃.

P  ::=  ()   |  (P)  | P P
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Recursively Defined Sets

Example #21: Derive the fact that (())() is in 𝑃.

I. Base: () is in 𝑃.

II. Recursion:
a. If 𝐸 is in 𝑃, so is (𝐸).

b. If 𝐸 and 𝐹 are in 𝑃, so is 𝐸𝐹.

III. Restriction: No configurations of parentheses 
are in 𝑃 other than those derived from 1 and 2 
above.

1. By I, () is in 𝑃.

2. By (1) and IIa, (()) is in 𝑃 [let 𝐸 = ()].

3. By (2), (1) and IIb,(())() is in 𝑃 [let 𝐸 = (()) and 𝐹 = ()].
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Recursively Defined Sets

Example #22: Recursive definition of ℤ≥0.

ℤ≥0 is the unique set with the following properties:

(1. what the founders are) 0 ∈ ℤ≥0. (base clause)

(2. what the constructors are) If 𝑥 ∈ ℤ≥0, then 𝑥 + 1 ∈ ℤ≥0. (recursion clause)

(3. nothing more) Membership for ℤ≥0 can always be demonstrated
by (finitely many) successive applications of the 
clauses above. (minimality clause)

ℤ≥0

0
+1

1
+1

2
+1

3
+1

4
+1

⋯
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Recursively Defined Sets

Example #23: Recursive definition of 2ℤ (the set of even integers).

2ℤ is the unique set with the following properties:

(1. what the founders are) 0 ∈ 2ℤ. (base clause)

(2. what the constructors are) If 𝑥 ∈ 2ℤ, then 𝑥 − 2, 𝑥 + 2 ∈ 2ℤ.
(recursion clause)

(3. nothing more) Membership for 2ℤ can always be demonstrated
by (finitely many) successive applications of the 
clauses above. (minimality clause)

2ℤ
0
+2−2

−2 2
+2−2

−4 4
+2−2

⋯ ⋯
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8.5.4. Structural Induction

(base clause) Specify that certain elements, called founders, are in S: 
if 𝑐 is a founder, then 𝑐 ∈ 𝑆.

(recursion clause) Specify certain functions, called constructors, under which the set 𝑆 is 
closed: if 𝑓 is a constructor and 𝑥 ∈ 𝑆, then 𝑓(𝑥) ∈ 𝑆.

(minimality clause) Membership for 𝑆 can always be demonstrated by (finitely many) 
successive applications of the clauses above.

Recursive definition of of a set 𝑆.

This is taken from Dr Wong Tin Lok’s notes.

To prove that ∀𝑥 ∈ 𝑆 𝑃(𝑥) is true, where each 𝑃(𝑥) is a proposition, it suffices to:

(basis step) show that 𝑃(𝑐) is true for every founder 𝑐; and

(induction step) show that ∀𝑥 ∈ 𝑆 𝑃 𝑥 ⇒ 𝑃 𝑓 𝑥 is true for every constructor 𝑓.

In words, if all the founders satisfy a property 𝑃, and 𝑃 is preserved by all constructors, 
then all elements of 𝑆 satisfy 𝑃.

Structural induction over 𝑆.
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P(0)
k ≥ 0, P(k)  P(k+1)
k ≥ 0, P(k)

1PI structural induction on Nat 

Nat  ::= 0 | 1+Nat 

Str(A)  ::=  | A.Str(A) 
P()
aA, sStr(A), P(s)  P(a.s)
 sStr(A), P(s)

1PI structural induction on Str(A) 
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Structural Induction

Example #24b: Define a set 𝐻 recursively as follows:
(1) 1 ∈ 𝐻. (base clause)

(2) If 𝑥 ∈ 𝐻, then 2𝑥 ∈ 𝐻 and 3𝑥 ∈ 𝐻 and 5𝑥 ∈ 𝐻. (recursion clause)

(3) Membership of 𝐻 can always be demonstrated by (finitely 
many) successive applications of the clauses above. (minimality clause)

Which of the numbers 9,10,11,12,13 are in 𝐻? Which are not?

9,10,12 ∈ 𝐻

11,13 ∉ 𝐻

Structural induction over 𝐻:
To prove ∀𝑥 ∈ 𝐻 𝑃(𝑛) is true, where each 𝑃(𝑛) is a proposition, it suffices to:

(basis step): show that P(1) is true; and

(induction step): show that ∀𝑥 ∈ 𝐻 𝑃 𝑥 ⇒ 𝑃 2𝑥 ∧ 𝑃 3𝑥 ∧ 𝑃 5𝑥 is true.

𝐻 = {2𝑖3𝑗5𝑘: 𝑖, 𝑗, 𝑘0}

Hamming numbers
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H  ::= 1 | 2H | 3H | 5H  P(1)
nH, P(n)  P(2n)  P(3n)  P(5n) 
 nH, P(n)

1P1 structural induction on H 
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