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14. Trees

10.5 Trees

• Definitions: circuit-free, tree, trivial tree, forest

• Characterizing trees: terminal vertex (leaf), internal vertex

10.6 Rooted Trees

• Definitions: rooted tree, root, level, height, child, parent, sibling, ancestor, 
descendant

• Definitions: binary tree, full binary tree, subtree

• Binary tree traversal: breadth-first-search (BFD), depth-first-search (DFS)

10.7 Spanning Trees and Shortest Paths

• Definitions: spanning tree, weighted graph, minimum spanning tree (MST)

• Kruskal’s algorithm, Prim’s algorithm

• Dijkstra’s shortest path algorithm (non-examinable)

Summary
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10.5 Trees

Summary

Definitions: Terminal vertex (leaf) and internal vertex

Let T be a tree. If T has only one or two vertices, then each is called a terminal 
vertex (or leaf). If T has at least three vertices, then a vertex of degree 1 in T is called 
a terminal vertex (or leaf), and a vertex of degree greater than 1 in T is called an 
internal vertex. 

Definition: Tree

(The graph is assumed to be undirected here.)

A graph is said to be circuit-free if and only if it has no circuits.

A simple graph is called a tree if and only if it is circuit-free and connected.

A trivial tree is a tree that consists of a single vertex.

A simple graph is called a forest if and only if it is circuit-free and not connected.
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10.5 Trees

Summary

Lemma 10.5.1

Any non-trivial tree has at least one vertex of degree 1.

Theorem 10.5.2

Any tree with n vertices (n > 0) has n – 1 edges.

Lemma 10.5.3

If G is any connected graph, C is any circuit in G, and one of the edges of C is 
removed from G, then the graph that remains is still connected.

Theorem 10.5.4

If G is a connected graph with n vertices and n – 1 edges, then G is a tree.
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10.6 Rooted Trees

Summary

Definitions: Rooted Tree, Level, Height

A rooted tree is a tree in which there is one vertex that is distinguished from the 
others and is called the root.

The level of a vertex is the number of edges along the unique path between it 
and the root.

The height of a rooted tree is the maximum level of any vertex of the tree. 

Definitions: Child, Parent, Sibling, Ancestor, Descendant

Given the root or any internal vertex v of a rooted tree, the children of v are all 
those vertices that are adjacent to v and are one level farther away from the root 
than v.

If w is a child of v, then v is called the parent of w, and two distinct vertices that are 
both children of the same parent are called siblings.

Given two distinct vertices v and w, if v lies on the unique path between w and the 
root, then v is an ancestor of w, and w is a descendant of v. 
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10.6 Rooted Trees

Summary

Definitions: Binary Tree, Full Binary Tree

A binary tree is a rooted tree in which every parent has at most two children. 
Each child is designated either a left child or a right child (but not both), and 
every parent has at most one left child and one right child.

A full binary tree is a binary tree in which each parent has exactly two children. 

Definitions: Left Subtree, Right Subtree

Given any parent v in a binary tree T, if v has a left child, then the left subtree of v is 
the binary tree whose root is the left child of v, whose vertices consist of the left 
child of v and all its descendants, and whose edges consist of all those edges of T
that connect the vertices of the left subtree.

The right subtree of v is defined analogously. 
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10.6 Rooted Trees

Summary

Theorem 10.6.1: Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices 
and has k + 1 terminal vertices (leaves).

Theorem 10.6.2

For non-negative integers h, if T is any binary tree with height h and t terminal 
vertices (leaves), then

t  2h

Equivalently,
log2 t  h
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10.6 Rooted Trees

Summary

Breadth-First Search

In breadth-first search (by E.F. Moore), it starts at the root and 
visits its adjacent vertices, and then moves to the next level. 

1

2 3

4 5 6

7 8 9

The figure shows the order 
of the vertices visited.

BFS

Acknowledgement: Wikipedia https://en.wikipedia.org/wiki/Breadth-first_search

https://en.wikipedia.org/wiki/Breadth-first_search
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10.6 Rooted Trees

Summary

Depth-First Search

There are three types of depth-first traversal:

 Pre-order
 Print the data of the root (or current vertex)
 Traverse the left subtree by recursively calling the pre-order function
 Traverse the right subtree by recursively calling the pre-order function

 In-order
 Traverse the left subtree by recursively calling the in-order function
 Print the data of the root (or current vertex)
 Traverse the right subtree by recursively calling the in-order function

 Post-order
 Traverse the left subtree by recursively calling the post-order function
 Traverse the right subtree by recursively calling the post-order function
 Print the data of the root (or current vertex)
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10.6 Rooted Trees

Summary

Depth-First Search

Pre-order:

F, B, A, D, C, E, G, I, H

In-order: Post-order:

A, B, C, D, E, F, G, H, I A, C, E, D, B, H, I, G, F

Acknowledgement: Wikipedia https://en.wikipedia.org/wiki/Tree_traversal

https://en.wikipedia.org/wiki/Tree_traversal
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10.7 Spanning Trees and Shortest Paths

Summary

Definition: Spanning Tree

A spanning tree for a graph G is a subgraph of G that contains every vertex of G
and is a tree. 

Proposition 10.7.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph have the same number of edges.

Definitions: Weighted Graph, Minimum Spanning Tree

A weighted graph is a graph for which each edge has an associated positive real 
number weight . The sum of the weights of all the edges is the total weight of the 
graph.

A minimum spanning tree for a connected weighted graph is a spanning tree that 
has the least possible total weight compared to all other spanning trees for the 
graph.

If G is a weighted graph and e is an edge of G, then w(e) denotes the weight of e and 
w(G) denotes the total weight of G. 
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10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.1 Kruskal

Input: G [a connected weighted graph with n vertices]

Algorithm:

1. Initialize T to have all the vertices of G and no edges.
2. Let E be the set of all edges of G, and let m = 0.
3. While (m < n – 1)

3a. Find an edge e in E of least weight.
3b. Delete e from E.
3c. If addition of e to the edge set of T does not produce a 

circuit, then add e to the edge set of T and set m = m + 1
End while

Output: T [T is a minimum spanning tree for G]
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10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.2 Prim

Input: G [a connected weighted graph with n vertices]

Algorithm:
1. Pick a vertex v of G and let T be the graph with this vertex only.
2. Let V be the set of all vertices of G except v.
3. For i = 1 to n – 1 

3a. Find an edge e of G such that (1) e connects T to one of the 
vertices in V, and (2) e has the least weight of all edges 
connecting T to a vertex in V. Let w be the endpoint of e
that is in V.

3b. Add e and w to the edge and vertex sets of T, and delete w
from V.

Output: T [T is a minimum spanning tree for G]



Algorithm 10.7.3 Dijkstra
Inputs: 

 G [a connected simple graph with positive weight for every edge]

  [a number greater than the sum of the weights of all the edges in G]

 w(u, v) [the weight of edge {u, v}]

 a [the source vertex]

 z [the destination vertex]

Algorithm:
1. Initialize T to be the graph with vertex a and no edges.  

Let V(T) be the set of vertices of T, and let E(T) be the set of 
edges of T.

2. L(a)  0, and for all vertices u in G except a, L(u)   . 
[The number L(u) is called the label of u.]

3. Initialize v  a and F  {a}. [The symbol v is used to denote the 
vertex most recently added to T.] 14

10.7 Spanning Trees and Shortest Paths

Summary
To skip for this 
semester.
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10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.3 Dijkstra (continued…)

Let Adj(x) denote the set of vertices adjacent to vertex x.

4. While (z V(T))
a. F  (F – {v})  {vertices  Adj(v) and  V(T)}

[The set F is the set of fringe vertices.]

b. For each vertex u  Adj(v) and  V(T),
if L(v) + w(v, u) < L(u) then

L(u)  L(v) + w(v, u)
D(u)  v

c. Find a vertex x in F with the smallest label.
Add vertex x to V(T), and add edge {D(x), x} to E(T).
v  x

Output: L(z) [this is the length of the shortest path from a to z.]

[The notation D(u) is 
introduced to keep track 
of which vertex in T gave 
rise to the smaller value.]

To skip for this 
semester.
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END OF FILE


