
Aaron Tan

Lecture #13: Trees
Summary

1AY2024/25 Semester 1

2

14. Trees

10.5 Trees

• Definitions: circuit-free, tree, trivial tree, forest

• Characterizing trees: terminal vertex (leaf), internal vertex

10.6 Rooted Trees

• Definitions: rooted tree, root, level, height, child, parent, sibling, ancestor,
descendant

• Definitions: binary tree, full binary tree, subtree

• Binary tree traversal: breadth-first-search (BFD), depth-first-search (DFS)

10.7 Spanning Trees and Shortest Paths

• Definitions: spanning tree, weighted graph, minimum spanning tree (MST)

• Kruskal’s algorithm, Prim’s algorithm

• Dijkstra’s shortest path algorithm (non-examinable)

Summary

3

10.5 Trees

Summary

Definitions: Terminal vertex (leaf) and internal vertex

Let T be a tree. If T has only one or two vertices, then each is called a terminal
vertex (or leaf). If T has at least three vertices, then a vertex of degree 1 in T is called
a terminal vertex (or leaf), and a vertex of degree greater than 1 in T is called an
internal vertex.

Definition: Tree

(The graph is assumed to be undirected here.)

A graph is said to be circuit-free if and only if it has no circuits.

A simple graph is called a tree if and only if it is circuit-free and connected.

A trivial tree is a tree that consists of a single vertex.

A simple graph is called a forest if and only if it is circuit-free and not connected.

4

10.5 Trees

Summary

Lemma 10.5.1

Any non-trivial tree has at least one vertex of degree 1.

Theorem 10.5.2

Any tree with n vertices (n > 0) has n – 1 edges.

Lemma 10.5.3

If G is any connected graph, C is any circuit in G, and one of the edges of C is
removed from G, then the graph that remains is still connected.

Theorem 10.5.4

If G is a connected graph with n vertices and n – 1 edges, then G is a tree.

5

10.6 Rooted Trees

Summary

Definitions: Rooted Tree, Level, Height

A rooted tree is a tree in which there is one vertex that is distinguished from the
others and is called the root.

The level of a vertex is the number of edges along the unique path between it
and the root.

The height of a rooted tree is the maximum level of any vertex of the tree.

Definitions: Child, Parent, Sibling, Ancestor, Descendant

Given the root or any internal vertex v of a rooted tree, the children of v are all
those vertices that are adjacent to v and are one level farther away from the root
than v.

If w is a child of v, then v is called the parent of w, and two distinct vertices that are
both children of the same parent are called siblings.

Given two distinct vertices v and w, if v lies on the unique path between w and the
root, then v is an ancestor of w, and w is a descendant of v.

6

10.6 Rooted Trees

Summary

Definitions: Binary Tree, Full Binary Tree

A binary tree is a rooted tree in which every parent has at most two children.
Each child is designated either a left child or a right child (but not both), and
every parent has at most one left child and one right child.

A full binary tree is a binary tree in which each parent has exactly two children.

Definitions: Left Subtree, Right Subtree

Given any parent v in a binary tree T, if v has a left child, then the left subtree of v is
the binary tree whose root is the left child of v, whose vertices consist of the left
child of v and all its descendants, and whose edges consist of all those edges of T
that connect the vertices of the left subtree.

The right subtree of v is defined analogously.

7

10.6 Rooted Trees

Summary

Theorem 10.6.1: Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices
and has k + 1 terminal vertices (leaves).

Theorem 10.6.2

For non-negative integers h, if T is any binary tree with height h and t terminal
vertices (leaves), then

t 2h

Equivalently,
log2 t h

8

10.6 Rooted Trees

Summary

Breadth-First Search

In breadth-first search (by E.F. Moore), it starts at the root and
visits its adjacent vertices, and then moves to the next level.

1

2 3

4 5 6

7 8 9

The figure shows the order
of the vertices visited.

BFS

Acknowledgement: Wikipedia https://en.wikipedia.org/wiki/Breadth-first_search

https://en.wikipedia.org/wiki/Breadth-first_search

9

10.6 Rooted Trees

Summary

Depth-First Search

There are three types of depth-first traversal:

 Pre-order
 Print the data of the root (or current vertex)
 Traverse the left subtree by recursively calling the pre-order function
 Traverse the right subtree by recursively calling the pre-order function

 In-order
 Traverse the left subtree by recursively calling the in-order function
 Print the data of the root (or current vertex)
 Traverse the right subtree by recursively calling the in-order function

 Post-order
 Traverse the left subtree by recursively calling the post-order function
 Traverse the right subtree by recursively calling the post-order function
 Print the data of the root (or current vertex)

10

10.6 Rooted Trees

Summary

Depth-First Search

Pre-order:

F, B, A, D, C, E, G, I, H

In-order: Post-order:

A, B, C, D, E, F, G, H, I A, C, E, D, B, H, I, G, F

Acknowledgement: Wikipedia https://en.wikipedia.org/wiki/Tree_traversal

https://en.wikipedia.org/wiki/Tree_traversal

11

10.7 Spanning Trees and Shortest Paths

Summary

Definition: Spanning Tree

A spanning tree for a graph G is a subgraph of G that contains every vertex of G
and is a tree.

Proposition 10.7.1

1. Every connected graph has a spanning tree.

2. Any two spanning trees for a graph have the same number of edges.

Definitions: Weighted Graph, Minimum Spanning Tree

A weighted graph is a graph for which each edge has an associated positive real
number weight . The sum of the weights of all the edges is the total weight of the
graph.

A minimum spanning tree for a connected weighted graph is a spanning tree that
has the least possible total weight compared to all other spanning trees for the
graph.

If G is a weighted graph and e is an edge of G, then w(e) denotes the weight of e and
w(G) denotes the total weight of G.

12

10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.1 Kruskal

Input: G [a connected weighted graph with n vertices]

Algorithm:

1. Initialize T to have all the vertices of G and no edges.
2. Let E be the set of all edges of G, and let m = 0.
3. While (m < n – 1)

3a. Find an edge e in E of least weight.
3b. Delete e from E.
3c. If addition of e to the edge set of T does not produce a

circuit, then add e to the edge set of T and set m = m + 1
End while

Output: T [T is a minimum spanning tree for G]

13

10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.2 Prim

Input: G [a connected weighted graph with n vertices]

Algorithm:
1. Pick a vertex v of G and let T be the graph with this vertex only.
2. Let V be the set of all vertices of G except v.
3. For i = 1 to n – 1

3a. Find an edge e of G such that (1) e connects T to one of the
vertices in V, and (2) e has the least weight of all edges
connecting T to a vertex in V. Let w be the endpoint of e
that is in V.

3b. Add e and w to the edge and vertex sets of T, and delete w
from V.

Output: T [T is a minimum spanning tree for G]

Algorithm 10.7.3 Dijkstra
Inputs:

 G [a connected simple graph with positive weight for every edge]

 [a number greater than the sum of the weights of all the edges in G]

 w(u, v) [the weight of edge {u, v}]

 a [the source vertex]

 z [the destination vertex]

Algorithm:
1. Initialize T to be the graph with vertex a and no edges.

Let V(T) be the set of vertices of T, and let E(T) be the set of
edges of T.

2. L(a) 0, and for all vertices u in G except a, L(u) .
[The number L(u) is called the label of u.]

3. Initialize v a and F {a}. [The symbol v is used to denote the
vertex most recently added to T.] 14

10.7 Spanning Trees and Shortest Paths

Summary
To skip for this
semester.

15

10.7 Spanning Trees and Shortest Paths

Summary

Algorithm 10.7.3 Dijkstra (continued…)

Let Adj(x) denote the set of vertices adjacent to vertex x.

4. While (z V(T))
a. F (F – {v}) {vertices Adj(v) and V(T)}

[The set F is the set of fringe vertices.]

b. For each vertex u Adj(v) and V(T),
if L(v) + w(v, u) < L(u) then

L(u) L(v) + w(v, u)
D(u) v

c. Find a vertex x in F with the smallest label.
Add vertex x to V(T), and add edge {D(x), x} to E(T).
v x

Output: L(z) [this is the length of the shortest path from a to z.]

[The notation D(u) is
introduced to keep track
of which vertex in T gave
rise to the smaller value.]

To skip for this
semester.

16

END OF FILE

