CS1231S Discrete Structures

Midterm Test - Answer Sheet

AY2022/23 Semester 2

Time allowed: 1 hour 30 minutes

INSTRUCTIONS

1. Write your Student Number on the right AND, using pen or pencil, shade the corresponding circle completely in the grid for each digit or letter. DO NOT WRITE YOUR NAME!
2. Zero mark will be given if you write/shade your Student Number incompletely or incorrectly.
3. Write your Student Number at the top of page 3.
4. This answer sheet comprises FOUR (4) pages.
5. All questions must be answered in the space provided; no extra sheets will be accepted as answers.
6. You must submit only this ANSWER SHEET and no other documents.
7. An excerpt of the question may be provided to aid you in answering in the correct box. It is not the exact question.

権 STUDENT NUMBER

 You should still refer to the original question in the question paper.
8. You may write your answers using pencil (at least 2B) or pen as long as it is legible (no red ink, please).
9. The maximum mark for this paper is 50 .
10. Marks may be deducted for (i) illegible handwriting, and/or (ii) excessively long answer.
11. Each multiple choice question is intended to have only one answer. Please shade the appropriate bubble.

For Examiner's Use Only		
Question	Marks	Remarks
Q1-12	$/ 24$	
Q13	$/ 5$	
Q14	$/ 6$	
Q15	$/ 3$	
Q16	$/ 5$	
Q17	$/ 7$	
Total	$/ \mathbf{5 0}$	

Part A: Multiple Choice Questions (Total: 24 marks)

Please shade using pencil only ONE bubble for each question.

	(A)	(B)	(C)	(D)	(E)
1.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
2.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
6.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
9.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
10.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
12.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	(A)	(B)	(C)	(D)	(E)

Part B (Total: 26 marks)
13. Maximal chains. [5 marks]

Maximal chain has length of 4.
Many possible answers. Two are given below.
(a)

$$
\{\emptyset,\{b\},\{b, d\},\{b, c, d\},\{a, b, c, d\}\}
$$

(b) Hasse diagram:

Two maximal chains of different lengths:
$\{2,6,12\}$ and $\{11,385\}$

$$
\begin{aligned}
& \text { or }\{3,6,12\} \text { and }\{11,385\} \\
& \text { or }\{5,35,385\} \text { and }\{11,385\} \\
& \text { or }\{7,35,385\} \text { and }\{11,385\}
\end{aligned}
$$

14. Propositional logic. [6 marks]

1. $(q \vee p) \quad$ (Commutative law on P 1$)$
2. $(\sim q \vee r) \quad$ (Implication law on P2)
3. $(\sim(p \wedge s) \vee t)$ (Implication law on P3)
4. $\sim r$
(P4)
5. $\sim(\sim q) \vee(u \wedge s) \quad$ (Implication law on P5)
6. ($q \vee(u \wedge s)) \quad$ (Double negative law on (5))
7. $\sim t$ (Negation of conclusion) \leftarrow Start of proof by contradiction
8. ($p \vee r$) (Resolution law on (1) and (2))
9. p (Elimination on (4) and (8))
10. ($\sim p \vee \sim s \vee t) \quad$ (De Morgan's law on (3))
11. $(\sim s \vee t) \quad$ (Elimination on (9) and (10))
12. $((q \vee u) \wedge(q \vee s))$ (Distributive Law on (6))
13. $(q \vee s) \quad$ (Specialization on (12))
14. ($(s \vee r) \quad$ (Resolution law on (2) and (13))
15. ($r \vee t$) (Resolution law on (11) and (14))
16. r (Elimination on (7) and (15))
17. false (Negation law on (4) and (16)) \leftarrow Contradiction arrived
(Note: Elimination rule of inference (Lecture 2 slide 64): $(p \vee q) \wedge \sim q \rightarrow p$.)
18. Sets. [3 marks]
(a)

$$
\begin{aligned}
& A \cap B=\emptyset \text {. Example: } A=\{a\}, B=\{b\} \text {. } \\
& \text { Then }|A \cup B|=|\{a, b\}|=2=1+1=|A|+|B|
\end{aligned}
$$

(b)
$A \cap B \neq \emptyset$. Example: $A=\{a, c\}, B=\{b, c\}$.
Then $|A \cup B|=|\{a, b, c\}|=3 \neq 4=2+2=|A|+|B|$.
(c)

False
16. Relations. [5 marks]

Write capital \mathbf{T} (for true) or capital \mathbf{F} (for false) clearly in the cells below.

	Reflexive	Irreflexive	Symmetric	Antisymmetric	Asymmetric	Transitive
R_{1}	T	F	T	F	F	T
R_{2}	F	T	T	F	F	F
R_{3}	F	F	T	F	F	F
R_{4}	F	F	F	T	F	T
R_{5}	F	T	T	T	T	T

17. Relations [7 marks]
(a)

To show that R is an equivalence relation, it suffices to show that R is reflexive if for every $x \in A$, there exists $y \in A$ such that $x R y$.

1. Let $x \in A$.
2. There exists $y \in A$ such that $x R y$ (as given).
3. Since $x R y$, we have $y R x$ (by symmetry, as given).
4. Since we have $x R y$ and $y R x$, we have $x R x$ (by transitivity, as given).
5. Hence R is reflexive (by the definition of reflexivity).
6. Therefore, R is an equivalence relation (as it is reflexive, symmetric and transitive).
(b) (i)

Yes, S is an equivalence relation. $|B / S|=9$. (Each equivalence class is a singleton.)
(ii)

Yes, S is a partial order. The maximal and minimum elements are the same: 2, 3, 5, 7, 11, 13, 17, 19, 23.
=== END OF PAPER ===

