CS1231S: Discrete Structures

Tutorial #4: Relations & Equivalence Relations
(Week 6: 16 — 20 September 2024)
Answers

1. LetA=1{1,2,..,10}and B = {2,4,6,8,10,12,14}. Define a relation R from A to B by setting
xRy © xisprimeandx |y

for each x € A and each y € B. Write down the sets R and R~ in roster notation. Do not use ellipses
(...) in your answers.

Answers:
R ={(22),(24),(26),(28),(2,10),(2,12),(2,14),(3,6),(3,12),(5,10), (7,14)}.
R1= {(2,2),(4,2),(6,2),(8,2),(10,2),(12,2),(14,2),(6,3),(12,3),(10,5), (14,7)}.

2. Let R be arelation on a set A. Show that the following are logically equivalent by using this strategy:
(i) implies (ii), (ii) implies (iii), and (iii) implies (i).
(i) R issymmetric,i.e.Vx,y€EA(xRy = yRx).
(i) vx,yeA(xRy © yRx).
(i) R=RL
Answer:
1. ((i) = (i)
1.1. Suppose R is symmetric.
1.2. Letx,y € A.
1.3. (=)Ifx Ry, theny R x by the symmetry of R.

1.4. (&) Ify R x, then x R y by the symmetry of R.
1.5. From1.3and 1.4, wehavexRy © yR x.

2. ((ii) = (iii))
2.1. SupposeVx,yEA(xRy © yRXx).
2.2. Thenforallx,y € A4,

221 (x,y)ER & XRy by the definition of x R y
2.2.2. s YRx by 2.1

2.2.3. = xR™1y  bythedefinitionof R 1
2.2.4. e  (x,y) € R™! bythedefinitionofx R ~1 y.

2.3. HenceR =R 1.

3. ((iii) = (i))
3.1. Suppose R = R™1L.
3.1.1. Letx,y € Asuchthatx R y.
3.1.2. ThenxR 1yasR=R"1.
3.13. ~yRx by the definition of R 1
3.2. Hence R is symmetric.

4. Therefore (i), (i) and (iii) are logically equivalent.
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3. For each of the relations defined below, determine whether it is (i) reflexive, (ii) symmetric, (iii)
transitive, and (iv) an equivalence relation. If a property is false for the relation, give a counter-

example.

(a) LetA =1{1,2,3}, Q@ = {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}, where Q is a relation on A.
(b) Define the relation E on Q by setting, forallx,y E Q. x Ey © x =y.

(c) Define the relation R on Q by setting, forallx,y € Q. x Ry © xy = 0.

(d) Define the relation S on Q by setting, forallx,y € Q. xSy © xy > 0.

(e) Define the relation T on Z by setting, forallx,y € Z,xTy © -2<x—y < 2.

Answers:
Reflexive? Symmetric? Transitive? Equivalence relation?
No
Q Yes 10 2 but 2 Ql Yes No
E Yes Yes Yes Yes
No
R Yes Yes 1R0O0andOR -1 No
but1 K —1
No
S 050 Yes Yes No
No
T Yes Yes —2T0and0T2 No
but —2 72

4. The directed graph of a binary relation R on a set A = {a, b, c} is shown below.

a@*

>»@® )

‘O

Draw the directed graph for each of the following and determine if it is transitive or not. If it is not

transitive, explain.

(@QR°R
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Answers:

& (L

(@) RoR (b)R°oRoR () (ReR)UR
An easy way to compute R o R is as follows: (i) Start with the first element a and trace all possible

destinations after taking exactly two arrows (the same arrow may be taken twice). Then in the
resulting graph, draw an arrow from a to all such destinations; (ii) Repeat for elements b and c.

To compute R o R o R, use the same method as above, but take exactly three arrows.
(@) R o R: Not transitive. Reason: a(R o R)c A c(R o R)b but a(R=R)b.

(b) R o R o R: Not transitive. Reason: a(R° R o R)c Ac(R o R o R)a but a(R=R°R)a.
(c) (R°R)UR: Transitive.

5. (AY2023/24 semester 1 midterm test).
Which of the following are true for all equivalence relations R?
(@ R1oR=RoR™!
(b) RS RoR
() R-.RCR
(d) RoR"!=R
Answers:
(a) True, because equivalence relations are symmetric. R is symmetric if and only if R = R™! (by
Q2). Proof: R"”!oR=RoR=RoR™ 1

(b) True, because equivalence relations are reflexive. Let R be a relation on the set A. Proof:
1. Let(x,y) € R, wherex,y € A.
2. Since (x,x),(y,y) € R (by reflexivity of R), composing (x,x) with (x,y), or (x,y) with
(y,y), we have (x,y) € R o R (by definition of composition of relations).

(c) True, because equivalence relations are transitive. Let R be a relation on the set A. Proof:
1. Let(x,z) ERoR,wherex,z € A.
2. There existssome y € A such that (x,y) € R and (y, 2z) € R (by definition of composition).
3. Hence by transitivity of R, (x,z) € R.

(d) True. Proof:
1. AsRissymmetric, R™! = R by Q2.
2. By(b)and(c),R°R =R.
3. Therefore, RoR™'=RoR =R bylines1and 2.
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6. (AY2023/24 semester 1 exam).
Define the following relation on A = {1,2,3}:

R={(1,1),(1,2),(2,1),(2,2),(3,3) }.
FiNndRoRoRoRoRoRoR.
(How do you make use of some question above to get the answer quickly?)

Answer:
{(1,D),(1,2),(21),(22),33) }.
Note that R is an equivalence relation. From Q5(d), we have R e R = R.

Hence, by associativity of composition of relations, we have

RoRoRoRoRoRoR=((RoR)o(RoR))o((RoR)eR)=(RoR)o(RoR)=RoR=R.

7. LetA,B,C,DbesetsandREAXB,SE€BXC,andT € C X D. Prove that
To(SoR)=(ToS)oR. A B
That is, composition of relations is associative. R S T
Answer:
1. NotethatSoRCS AXCandT oS S B XD.

2. (S)Suppose (a,d) ET o (S°R)
2.1. Then thereisac € C such that (a,c) € SeRand(c,d) €T.
(by the definition of composition of relations)
2.2. Moreover, from (a,c) € S o R thereisa b € B such that (a,b) € R and (b,c) € S.
2.3. From (b,c) € Sin2.2and (c,d) € T in 2.1, we have (b,d) €T o S.
2.4. From (a,b) € Rin2.2and (b,d) €T o Sin 2.3, we have (a,d) € (T°S)oR.
2.5. Therefore,To (SoR) € (T oS)oR.

3. (2)Suppose (a,d) € (ToS)oR
3.1. Then thereisa b € B such that (a,b) € Rand (b,d) ET o S.
(by the definition of composition of relations)
3.2. Moreover, from (b,d) € T o S thereisac € C such that (b,c) € Sand (¢,d) € T.
3.3. From (a,b) € Rin3.1and (b,c) € Sin 3.2, we have (a,c) € SoR.
3.4. From (a,c) € SoRin3.3and (¢,d) € Tin 3.2, we have (a,d) € T o (S o R).
3.5. Therefore,(T o S)o R S T o (SoR).

4. Therefore,To(SoR) =(ToS)o°R.
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8.

(AY2020/21 Semester 1 exam question)
Define an equivalence relation ~ on Z* X Z* by setting, forall a,b,c,d € Z*,

(a; b)N(C; d) S ab = cd.

Write down the equivalence classes [(1,1)] and [(4,3)] in roster notation.

Answers:

[(LD] ={(x,y) €Z* xZ* : (1,1)~(x,y)} by the definition of equivalence class
={(x,y) €Z* xXZ*:1x1(=1) =ab} by the definition of ~
={(1L,D}.

[(4,3)] = {(x,y) € Z* X Z* : (4,3)~(x,y)} by the definition of equivalence class

={(x,y) €Z* X Z* : 4 x 3 (= 12) = ab} by the definition of ~
={(1,12),(2,6),(3,4),(4,3),(6,2),(12,1)}.

Consider the relation S = {(m,n) € Z? : m3 + n3is even}. (Recall that Z% means Z X Z.) Determine
(a)S7%, (b)SoSand(c)SoS1.

You may use theorems involving the sum of even and odd integers without quoting them (eg: the
sum of two even integers is even; the sum of an even integer and odd integer is odd; etc.).

Answers:
(@) St ={(x,y) €Z?: (y,x) € S} by the definition of inverse relation
={(x,y) €Z%:y® + x3iseven} by the definition of S
={(x,y) €Z%: x3 + y3iseven} by the commutative law of addition
=S by the definition of S
(b) SoS=S
Proof:

1. (S)Suppose (x,z) ESoS
1.1. Then (x,y) € Sand (y,z) € S forsome y € Z.
(by the definition of composition of relations)
1.2. So x3 + y3iseven and y3 + z3 is even.
1.3. This implies that x3 + 2y3 + z3 is even.
1.4. This implies that x3 + z3 is even as 2y3 is even.
1.5. Therefore, (x,z) € S by the definition of S.

2. (2)Suppose (x,z) €S
2.1. Then x3 + z3 is even by the definition of S.
2.2. Case 1: x3 is odd.
2.2.1. Then z3 is also odd.
2.2.2. Thisimplies x3 + 13 isevenand 13 + z3 is even.
2.2.3. Thus(x,1) € Sand (1,z) € S by the definition of S.
2.2.4. So(x,z) € S o S by the definition of composition of relations.
2.3. Case 2: x3 is even.
2.3.1. Then z3 is also even.
2.3.2. This implies x3 + 0% is even and 03 + z3 is even.
2.3.3. Thus (x,0) € Sand (0,z) € S by the definition of S.
2.3.4. So(x,z) € S oS by the definition of composition of relations.
2.4. Inallcases, (x,z) ES o S.

3. #§505=0S.
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Alternatively, for 2:
2. (2)Suppose (x,z) €S
2.1. Note that (x,x) € S as x> + x3 is even.
2.2. Since (x,x) € Sand (x,z) € S, we have (x,z) € S o S by the definition of composition
of relations.
2.3. Hence, S € S o S.

(c) It follows from (a) and (b) thatSoS ™1 =S50S =S.

10. Define a relation ~ on Z \ {0} as follows: Va,b € Z\ {0} (a~b < ab > 0).

(a) Prove that ~ is an equivalence relation. You may adopt the appropriate order axioms and
theorems in Appendix A: Properties of the Real Numbers for the integers. (Appendix A is
available on Canvas > Files as well as the (CS1231S webpage at
https://www.comp.nus.edu.sg/~cs1231s/2 resources/lectures.html.)

(b) Determine all the distinct equivalence classes formed by this relation ~.

Answers:
(a) Proof:
1. (“Reflexivity”)
1.1. Leta € Z\ {0}, since a # 0, we have a? > 0 by T21. T21.1fa # 0, then a® > 0.
1.2. Thus, a~a by the definition of ~.
1.3. Hence ~ is reflexive.

2. (“Symmetry”)
2.1. Foranya,b € Z\ {0}, if a~b, then ab > 0 by the definition of ~.
2.2. Then ba > 0 by the commutative law of multiplication.
2.3. So b~a by the definition of ~.
2.4. Hence ~ is symmetric.

3. (“Transitivity”) Ord1. If a and b are positive,
3.1. Foranya,b,c € Z\ {0}, suppose a~b and b~c. soare a + b and ab.

3.2. Thenab > 0 and bc > 0 by the definition of ~.
3.3. Multiplying ab with bc (both positive) gives ab?c > 0 by Ord1.

3.4. Then (ac)b? > 0 by the associative and commutative laws of multiplication.
3.5. Then both (ac) and b? are positive, or both are negative, by T25.

3.6. Since b? > 0 (by T21, as b # 0), (ac) must also be positive.

3.7. Thus a~c by the definition of ~.
3.8. Hence ~ is transitive.

T25. If ab > 0, then both a and b
are positive, or both are negative.

4. Therefore, ~ is an equivalence relation.

(b) T25 states that if ab > 0, then both a and b are positive, or both are negative.

Thus, all positive integers are ~-related to one another, and likewise, all negative integers are ~-
related to one another.

Therefore, the two distinct equivalence classes are: {a € Z— {0} : a > 0} and {a € Z — {0} :
a < 0}. Or, choosing 1 and -1 as representatives, the two equivalence classes are [1] and [-1].
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