CS1231S: Discrete Structures Tutorial #4: Relations & Equivalence Relations (Week 6: 16 – 20 September 2024) Answers

1. Let $A = \{1,2,...,10\}$ and $B = \{2,4,6,8,10,12,14\}$. Define a relation R from A to B by setting

 $x R y \Leftrightarrow x$ is prime and $x | y$

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in **roster notation**. Do not use ellipses (…) in your answers.

Answers:

 $R = \{(2,2), (2,4), (2,6), (2,8), (2,10), (2,12), (2,14), (3,6), (3,12), (5,10), (7,14)\}.$ $R^{-1} = \{(2,2), (4,2), (6,2), (8,2), (10,2), (12,2), (14,2), (6,3), (12,3), (10,5), (14,7)\}.$

- 2. Let R be a relation on a set A . Show that the following are logically equivalent by using this strategy: (i) implies (ii), (ii) implies (iii), and (iii) implies (i).
	- (i) R is symmetric, i.e. $\forall x, y \in A$ ($x R y \Rightarrow y R x$).
	- (ii) $\forall x, y \in A$ $(x R y \Leftrightarrow y R x)$.
	- (iii) $R = R^{-1}$.

Answer:

- 1. $((i) \Rightarrow (ii))$
	- 1.1. Suppose R is symmetric.
	- 1.2. Let $x, y \in A$.
	- 1.3. (\Rightarrow) If x R y, then y R x by the symmetry of R.
	- 1.4. (\Leftarrow) If y R x, then x R y by the symmetry of R.
	- 1.5. From 1.3 and 1.4, we have $x R y \Leftrightarrow y R x$.
- 2. $((ii) \Rightarrow (iii))$

2.1. Suppose $\forall x, y \in A$ $(x R y \Leftrightarrow y R x)$. 2.2. Then for all $x, y \in A$, 2.2.1. $(x, y) \in R \iff x R y$ by the definition of x R y 2.2.2. $\Leftrightarrow \qquad y R x$ by 2.1 2.2.3. \Leftrightarrow $\begin{array}{ccc} x R^{-1} y \end{array}$ $^{-1}$ y by the definition of R $^{-1}$ 2.2.4. \Leftrightarrow $(x, y) \in R^{-1}$ -1 by the definition of $x R^{-1} y$. 2.3. Hence $R = R^{-1}$. 3. ((iii) \Rightarrow (i)) 3.1. Suppose $R = R^{-1}$. 3.1.1. Let $x, y \in A$ such that $x R y$. 3.1.2. Then $x R^{-1} y$ as $R = R^{-1}$. 3.1.3. ∴ $y R x$ by the definition of R^{-1} 3.2. Hence R is symmetric.

4. Therefore (i), (ii) and (iii) are logically equivalent.

- 3. For each of the relations defined below, determine whether it is (i) reflexive, (ii) symmetric, (iii) transitive, and (iv) an equivalence relation. If a property is false for the relation, give a counterexample.
	- (a) Let $A = \{1,2,3\}, Q = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\},$ where Q is a relation on A.
	- (b) Define the relation E on ℚ by setting, for all $x, y \in \mathbb{Q}, x E y \Leftrightarrow x = y$.
	- (c) Define the relation R on $\mathbb Q$ by setting, for all $x, y \in \mathbb Q, x R y \Leftrightarrow xy \ge 0$.
	- (d) Define the relation S on $\mathbb Q$ by setting, for all $x, y \in \mathbb Q, x \leq y \Leftrightarrow xy > 0$.
	- (e) Define the relation T on $\mathbb Z$ by setting, for all $x, y \in \mathbb Z$, $x \in \mathbb T$ $y \Leftrightarrow -2 \le x y \le 2$.

Answers:

4. The directed graph of a binary relation R on a set $A = \{a, b, c\}$ is shown below.

Draw the directed graph for each of the following and determine if it is transitive or not. If it is not transitive, explain.

(a) $R \circ R$ (b) $R \circ R \circ R$ (c) $(R \circ R) \cup R$

An easy way to compute $R \circ R$ is as follows: (i) Start with the first element a and trace all possible destinations after taking exactly two arrows (the same arrow may be taken twice). Then in the resulting graph, draw an arrow from a to all such destinations; (ii) Repeat for elements b and c .

To compute $R \circ R \circ R$, use the same method as above, but take exactly three arrows.

- (a) $R \circ R$: Not transitive. Reason: $a(R \circ R)c \wedge c(R \circ R)b$ but $a(R \circ R)b$.
- (b) $R \circ R \circ R$: Not transitive. Reason: $a(R \circ R \circ R)c \wedge c(R \circ R \circ R)a$ but $a(R \circ R \circ R)a$.
- (c) $(R \circ R) \cup R$: Transitive.

5. (AY2023/24 semester 1 midterm test). Which of the following are true for all equivalence relations R ?

- (a) $R^{-1} \circ R = R \circ R^{-1}$
- (b) $R \subseteq R \circ R$
- (c) $R \circ R \subseteq R$
- (d) $R \circ R^{-1} = R$

Answers:

- (a) True, because equivalence relations are symmetric. R is symmetric if and only if $R = R^{-1}$ (by Q2). Proof: $R^{-1} \circ R = R \circ R = R \circ R^{-1}$.
- (b) True, because equivalence relations are reflexive. Let R be a relation on the set A . Proof:
	- 1. Let $(x, y) \in R$, where $x, y \in A$.
	- 2. Since (x, x) , $(y, y) \in R$ (by reflexivity of R), composing (x, x) with (x, y) , or (x, y) with (y, y) , we have $(x, y) \in R \circ R$ (by definition of composition of relations).
- (c) True, because equivalence relations are transitive. Let R be a relation on the set A . Proof:
	- 1. Let $(x, z) \in R \circ R$, where $x, z \in A$.
	- 2. There exists some $y \in A$ such that $(x, y) \in R$ and $(y, z) \in R$ (by definition of composition).
	- 3. Hence by transitivity of R, $(x, z) \in R$.
- (d) True. Proof:
	- 1. As R is symmetric, $R^{-1} = R$ by Q2.
	- 2. By (b) and (c), $R \circ R = R$.
	- 3. Therefore, $R \circ R^{-1} = R \circ R = R$ by lines 1 and 2.

6. (AY2023/24 semester 1 exam). Define the following relation on $A = \{1,2,3\}$:

$$
R = \{ (1,1), (1,2), (2,1), (2,2), (3,3) \}.
$$

Find $R \circ R \circ R \circ R \circ R \circ R \circ R$.

(How do you make use of some question above to get the answer quickly?)

Answer:

 $\{(1,1), (1,2), (2,1), (2,2), (3,3)\}.$

Note that R is an equivalence relation. From Q5(d), we have $R \circ R = R$.

Hence, by associativity of composition of relations, we have

 $R \circ R \circ R \circ R \circ R \circ R = ((R \circ R) \circ (R \circ R)) \circ ((R \circ R) \circ R) = (R \circ R) \circ (R \circ R) = R \circ R = R$.

7. Let A, B, C, D be sets and $R \subseteq A \times B$, $S \subseteq B \times C$, and $T \subseteq C \times D$. Prove that

$$
T \circ (S \circ R) = (T \circ S) \circ R.
$$

That is, composition of relations is associative.

Answer:

- 1. Note that $S \circ R \subseteq A \times C$ and $T \circ S \subseteq B \times D$.
- 2. (⊆) Suppose $(a, d) \in T \circ (S \circ R)$
	- 2.1. Then there is a $c \in C$ such that $(a, c) \in S \circ R$ and $(c, d) \in T$. (by the definition of composition of relations)
	- 2.2. Moreover, from $(a, c) \in S \circ R$ there is a $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.
	- 2.3. From $(b, c) \in S$ in 2.2 and $(c, d) \in T$ in 2.1, we have $(b, d) \in T \circ S$.
	- 2.4. From $(a, b) \in R$ in 2.2 and $(b, d) \in T \circ S$ in 2.3, we have $(a, d) \in (T \circ S) \circ R$.
	- 2.5. Therefore, $T \circ (S \circ R) \subseteq (T \circ S) \circ R$.
- 3. (⊇) Suppose $(a, d) \in (T \circ S) \circ R$
	- 3.1. Then there is a $b \in B$ such that $(a, b) \in R$ and $(b, d) \in T \circ S$. (by the definition of composition of relations)
	- 3.2. Moreover, from $(b, d) \in T \circ S$ there is a $c \in C$ such that $(b, c) \in S$ and $(c, d) \in T$.
	- 3.3. From $(a, b) \in R$ in 3.1 and $(b, c) \in S$ in 3.2, we have $(a, c) \in S \circ R$.
	- 3.4. From $(a, c) \in S \circ R$ in 3.3 and $(c, d) \in T$ in 3.2, we have $(a, d) \in T \circ (S \circ R)$.
	- 3.5. Therefore, $(T \circ S) \circ R \subseteq T \circ (S \circ R)$.
- 4. Therefore, $T \circ (S \circ R) = (T \circ S) \circ R$.

8. (AY2020/21 Semester 1 exam question)

Define an equivalence relation \sim on $\mathbb{Z}^+ \times \mathbb{Z}^+$ by setting, for all $a, b, c, d \in \mathbb{Z}^+$, $(a, b) \sim (c, d) \Leftrightarrow ab = cd.$

Write down the equivalence classes [(1,1)] and [(4,3)] in **roster notation**.

Answers: $[(1,1)] = {(x,y) \in \mathbb{Z}^+ \times \mathbb{Z}}$ by the definition of equivalence class $=\{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ : 1 \times 1 \ (=1)=ab\}$ by the definition of \sim $= \{(1,1)\}.$ $[(4,3)] = {(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}}$ by the definition of equivalence class $=\{(x, y) \in \mathbb{Z}^+ \times \mathbb{Z}^+ : 4 \times 3 \ (=12) = ab \}$ by the definition of \sim $= \{(1,12), (2,6), (3,4), (4,3), (6,2), (12,1)\}.$

9. Consider the relation $S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3$ is even}. (Recall that \mathbb{Z}^2 means $\mathbb{Z} \times \mathbb{Z}$.) Determine (a) S^{-1} , (b) $S \circ S$ and (c) $S \circ S^{-1}$.

You may use theorems involving the sum of even and odd integers without quoting them (eg: the sum of two even integers is even; the sum of an even integer and odd integer is odd; etc.).

Answers:

(a) $S^{-1} = \{(x, y) \in \mathbb{Z}^2$ $= \{(x, y) \in \mathbb{Z}^2 : y^3 + x^3\}$ $= \{ (x, y) \in \mathbb{Z}^2 : x^3 + y^3 \}$ $= S$ by the definition of S

by the definition of inverse relation by the definition of S by the commutative law of addition

```
(b) S \circ S = S
```
Proof:

- 1. (⊆) Suppose $(x, z) \in S \circ S$
	- 1.1. Then $(x, y) \in S$ and $(y, z) \in S$ for some $y \in \mathbb{Z}$. (by the definition of composition of relations)
	- 1.2. So $x^3 + y^3$ is even and $y^3 + z^3$ is even.
	- 1.3. This implies that $x^3 + 2y^3 + z^3$ is even.
	- 1.4. This implies that $x^3 + z^3$ is even as $2y^3$ is even.
	- 1.5. Therefore, $(x, z) \in S$ by the definition of S.
- 2. (\supseteq) Suppose $(x, z) \in S$
	- 2.1. Then $x^3 + z^3$ is even by the definition of S.
	- 2.2. Case $1: x^3$ is odd.
		- 2.2.1. Then z^3 is also odd.
		- 2.2.2. This implies $x^3 + 1^3$ is even and $1^3 + z^3$ is even.
		- 2.2.3. Thus $(x, 1) \in S$ and $(1, z) \in S$ by the definition of S.
		- 2.2.4. So $(x, z) \in S \circ S$ by the definition of composition of relations.
	- 2.3. Case 2: x^3 is even.
		- 2.3.1. Then z^3 is also even.
		- 2.3.2. This implies $x^3 + 0^3$ is even and $0^3 + z^3$ is even.
		- 2.3.3. Thus $(x, 0) \in S$ and $(0, z) \in S$ by the definition of S.
		- 2.3.4. So $(x, z) \in S \circ S$ by the definition of composition of relations.
	- 2.4. In all cases, $(x, z) \in S \circ S$.
- 3. ∴ $S \circ S = S$.

Alternatively, for 2:

- 2. (\supseteq) Suppose $(x, z) \in S$
	- 2.1. Note that $(x, x) \in S$ as $x^3 + x^3$ is even.
	- 2.2. Since $(x, x) \in S$ and $(x, z) \in S$, we have $(x, z) \in S \circ S$ by the definition of composition of relations.
	- 2.3. Hence, $S \subseteq S \circ S$.
- (c) It follows from (a) and (b) that $S \circ S^{-1} = S \circ S = S$.
- 10. Define a relation \sim on $\mathbb{Z}\setminus\{0\}$ as follows: $\forall a, b \in \mathbb{Z}\setminus\{0\}$ $(a \sim b \Leftrightarrow ab > 0)$.
	- (a) Prove that \sim is an equivalence relation. You may adopt the appropriate **order axioms** and **theorems** in *Appendix A: Properties of the Real Numbers* for the integers. (Appendix A is available on Canvas > Files as well as the CS1231S webpage at [https://www.comp.nus.edu.sg/~cs1231s/2_resources/lectures.html.](https://www.comp.nus.edu.sg/~cs1231s/2_resources/lectures.html))
	- (b) Determine all the distinct equivalence classes formed by this relation \sim .

Answers:

- (a) Proof:
	- 1. ("Reflexivity")
		- 1.1. Let $a \in \mathbb{Z} \setminus \{0\}$, since $a \neq 0$, we have $a^2 > 0$ by T21.
		- 1.2. Thus, $a \sim a$ by the definition of \sim .
		- 1.3. Hence \sim is reflexive.
	- 2. ("Symmetry")
		- 2.1. For any $a, b \in \mathbb{Z} \setminus \{0\}$, if $a \sim b$, then $ab > 0$ by the definition of \sim .
		- 2.2. Then $ba > 0$ by the commutative law of multiplication.
		- 2.3. So $b \sim a$ by the definition of \sim .
		- 2.4. Hence \sim is symmetric.
	- 3. ("Transitivity")
		- 3.1. For any $a, b, c \in \mathbb{Z} \setminus \{0\}$, suppose $a \sim b$ and $b \sim c$.
		- 3.2. Then $ab > 0$ and $bc > 0$ by the definition of \sim .
		- 3.3. Multiplying ab with bc (both positive) gives $ab^2c > 0$ by Ord1.
		- 3.4. Then $(ac)b^2 > 0$ by the associative and commutative laws of multiplication.
		- 3.5. Then both (ac) and b^2 are positive, or both are negative, by T25.
		- 3.6. Since $b^2 > 0$ (by T21, as $b \neq 0$), (ac) must also be positive.
		- 3.7. Thus $a \sim c$ by the definition of \sim .
		- 3.8. Hence \sim is transitive.
	- 4. Therefore, \sim is an equivalence relation.
- T25. If $ab > 0$, then both a and b are positive, or both are negative.
- (b) T25 states that if $ab > 0$, then both a and b are positive, or both are negative.

Thus, all positive integers are \sim -related to one another, and likewise, all negative integers are \sim related to one another.

Therefore, the two distinct equivalence classes are: $\{a \in \mathbb{Z} - \{0\} : a > 0\}$ and $\{a \in \mathbb{Z} - \{0\} : a \neq 0\}$ $a < 0$. Or, choosing 1 and -1 as representatives, the two equivalence classes are [1] and [-1].

Ord1. If a and b are positive, so are $a + b$ and ab .

T21. If $a \neq 0$, then $a^2 > 0$.