CS1231S: Discrete Structures Tutorial #4: Relations & Equivalence Relations (Week 6: 16 – 20 September 2024)

1. Discussion Questions

These are meant for you own discussion. No answers will be provided.

- D1. Let $A = \{0,1\}, B = \{a, b, c\}$ and $C = \{01,10\}$. Determine the following:
 - (a) $B \times C$ (b) $A \times B \times C$ (c) $\emptyset \times A$ (d) $\mathcal{P}(\{\emptyset\}) \times A$
- D2. Let $A = \{a, b, c, d, e\}$ and $N = \{1, 2, 3, 4, 5\}$. A relation R from A to N is shown in the arrow diagram below.

(a) Determine R^{-1} . (b) Determine $R^{-1} \circ R$.

2. Tutorial Questions

1. Let $A = \{1, 2, ..., 10\}$ and $B = \{2, 4, 6, 8, 10, 12, 14\}$. Define a relation R from A to B by setting

 $x R y \Leftrightarrow x$ is prime and x | y

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in **roster notation**. Do not use ellipses (...) in your answers.

- 2. Let *R* be a relation on a set *A*. Show that the following are logically equivalent by using this strategy: (i) implies (ii), (ii) implies (iii), and (iii) implies (i).
 - (i) *R* is symmetric, i.e. $\forall x, y \in A (x R y \Rightarrow y R x)$.
 - (ii) $\forall x, y \in A (x R y \Leftrightarrow y R x).$
 - (iii) $R = R^{-1}$.

- 3. For each of the relations defined below, determine whether it is (i) reflexive, (ii) symmetric, (iii) transitive, and (iv) an equivalence relation. If a property is false for the relation, give a counter-example.
 - (a) Let $A = \{1,2,3\}, Q = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$, where Q is a relation on A.
 - (b) Define the relation *E* on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x E y \Leftrightarrow x = y$.
 - (c) Define the relation R on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x R y \Leftrightarrow xy \ge 0$.
 - (d) Define the relation S on \mathbb{Q} by setting, for all $x, y \in \mathbb{Q}$, $x S y \Leftrightarrow xy > 0$.
 - (e) Define the relation T on \mathbb{Z} by setting, for all $x, y \in \mathbb{Z}$, $x T y \Leftrightarrow -2 \leq x y \leq 2$.
- 4. The directed graph of a binary relation R on a set $A = \{a, b, c\}$ is shown below.

Draw the directed graph for each of the following and determine if it is transitive or not. If it is not transitive, explain.

(a) $R \circ R$ (b) $R \circ R \circ R$ (c) $(R \circ R) \cup R$

- 5. (AY2023/24 semester 1 midterm test).Which of the following are true for all equivalence relations *R*?
 - (a) $R^{-1} \circ R = R \circ R^{-1}$
 - (b) $R \subseteq R \circ R$
 - (c) $R \circ R \subseteq R$
 - (d) $R \circ R^{-1} = R$
- 6. (AY2023/24 semester 1 exam). Define the following relation on $A = \{1,2,3\}$:

$$R = \{ (1,1), (1,2), (2,1), (2,2), (3,3) \}.$$

Find $R \circ R \circ R \circ R \circ R \circ R \circ R$.

(How do you make use of some question above to get the answer quickly?)

7. Let A, B, C, D be sets and $R \subseteq A \times B, S \subseteq B \times C$, and $T \subseteq C \times D$. Prove that $T \circ (S \circ R) = (T \circ S) \circ R$.

That is, composition of relations is associative.

8. (AY2020/21 Semester 1 exam question) Define an equivalence relation ~ on $\mathbb{Z}^+ \times \mathbb{Z}^+$ by setting, for all $a, b, c, d \in \mathbb{Z}^+$, $(a, b) \sim (c, d) \Leftrightarrow ab = cd.$

Write down the equivalence classes [(1,1)] and [(4,3)] in **roster notation**.

9. Consider the relation $S = \{(m, n) \in \mathbb{Z}^2 : m^3 + n^3 \text{ is even}\}$. (Recall that \mathbb{Z}^2 means $\mathbb{Z} \times \mathbb{Z}$.) Determine (a) S^{-1} , (b) $S \circ S$ and (c) $S \circ S^{-1}$.

You may use theorems involving the sum of even and odd integers without quoting them (eg: the sum of two even integers is even; the sum of an even integer and odd integer is odd; etc.).

- 10. Define a relation ~ on $\mathbb{Z} \setminus \{0\}$ as follows: $\forall a, b \in \mathbb{Z} \setminus \{0\}$ ($a \sim b \Leftrightarrow ab > 0$).
 - (a) Prove that ~ is an equivalence relation. You may adopt the appropriate order axioms and theorems in Appendix A: Properties of the Real Numbers for the integers. (Appendix A is available on Canvas > Files as well as the CS1231S webpage at https://www.comp.nus.edu.sg/~cs1231s/2 resources/lectures.html.)
 - (b) Determine all the distinct equivalence classes formed by this relation \sim .