CS1231S: Discrete Structures Tutorial #6: Functions (Week 8: 7 – 11 October 2024) Answers

1. Define the following relations on \mathbb{N} :

 $\forall x, y \in \mathbb{N} \ (x \ R_1 \ y \ \Leftrightarrow x^2 = y^2);$

 $\forall x, y \in \mathbb{N} \ (x \ R_2 \ y \Leftrightarrow y \mid x);$

 $\forall x, y \in \mathbb{N} \ (x \ R_3 \ y \Leftrightarrow y = x + 1).$

Are the relations R_1 , R_2 and R_3 functions? Prove or disprove.

Answers:

 R_1 is a function.

Proof:

(F1) $\forall x \in \mathbb{N}, \exists y = x \in \mathbb{N} \text{ such that } (x, y) \in R_1.$

- (F2) 1. $\forall x \in \mathbb{N}$, let $y_1, y_2 \in \mathbb{N}$.
 - 2. Suppose $(x, y_1) \in R_1 \land (x, y_2) \in R_1$.
 - 3. Then $y_1^2 = x^2$ and $y_2^2 = x^2$ (by the definition of R_1).
 - 4. Then $y_1^2 = y_2^2$.
 - 5. Hence $y_1 = y_2$ (as $y_1, y_2 \in \mathbb{N} \ge 0$).

 R_2 is not a function. Counterexample: $(6 R_2 2) \land (6 R_2 3)$.

 R_3 is a function.

Proof:

- (F1) $\forall x \in \mathbb{N}, \exists y = x + 1 \in \mathbb{N}$ such that $(x, y) \in R_3$.
- (F2) 1. $\forall x \in \mathbb{N}$, let $y_1, y_2 \in \mathbb{N}$.
 - 2. Suppose $(x, y_1) \in R_3 \land (x, y_2) \in R_3$.
 - 3. Then $y_1 = x + 1$ and $y_2 = x + 1$ (by the definition of R_3).
 - 4. Hence $y_1 = y_2$.

A **function** $f: X \to Y$, is a relation satisfying the following properties: (F1) $\forall x \in X, \exists y \in Y$ such that $(x, y) \in f$. (F2) $\forall x \in X, \forall y_1, y_2 \in Y$, $((x, y_1) \in f \land (x, y_2) \in f) \to y_1 = y_2$. 2. Let $A = \{a, b\}$ and S be the set of all strings over A. (See Lecture 7 section 7.1.2 for the definition of string.)

Define a concatenate-by-*a*-on-the-left function $C: S \rightarrow S$ by C(s) = as for all $s \in S$.

- (a) Is *C* an injection? Prove or give a counterexample.
- (b) Is *C* a surjection? Prove or give a counterexample.

Answers:

(a) Yes, *C* is an injection.

Proof:

- 1. Take any two strings $s_1, s_2 \in S$ and suppose $C(s_1) = C(s_2)$.
- 2. Then $as_1 = as_2$ by the definition of *C*.
 - 2.1. Let the length of as_1 and as_2 be n.
 - 2.2. Then the length of s_1 and s_2 is n 1.
 - 2.3. Write $s_1 = x_1 x_2 \cdots x_{n-1}$ and $s_2 = y_1 y_2 \cdots y_{n-1}$ for $x_i, y_i \in A$, for all $i \in \{1, 2, \dots, n-1\}$.
 - 2.4. Thus $ax_1x_2 \cdots x_{n-1} = ay_1y_2 \cdots y_{n-1}$ by substitution.
 - 2.5. Thus $x_i = y_i$ for all $i \in \{1, 2, \dots, n-1\}$ by string equality.
 - 2.6. Hence $s_1 = s_2$.
- 3. Therefore *C* is an injection.
- (b) No, C is not a surjection.

Proof:

- 1. Take the string *b* from *S*.
- 2. (Claim: There is no $s \in S$ such that C(s) = b.)
- 3. Suppose not, i.e., suppose $\exists s \in S$ such that C(s) = b.
 - 3.1. Then C(s) = as = b by the definition of *C*.
 - 3.2. Then *as* and *b* have the same length.
 - 3.3. Since *a* and *b* have length 1, this means $s = \varepsilon$ (the empty string, which has a length of 0).
 - 3.4. But this means $b = as = a\varepsilon = a$.
 - 3.5. This is a contradiction since $a \neq b$.
- 4. Hence, for *b*, there is no $s \in S$ such that C(s) = b.
- 5. Therefore *C* is not a surjection.

- 3. Let $A = \{s, u\}$. Define a function $len: A^* \to \mathbb{Z}_{\geq 0}$ by setting $len(\sigma)$ to be the length of σ for each $\sigma \in A^*$.
 - (a) What is *len(suu)*?
 - (b) What is $len(\{\varepsilon, ss, uu, ssss\})$?
 - (c) What is $len^{-1}(\{3\})$?
 - (d) Does len^{-1} exist? Explain your answer.

Answers:

- (a) len(suu) = 3.
- (b) $len(\{\varepsilon, ss, uu, ssss\}) = \{0, 2, 4\}.$
- **Theorem 7.2.3** If $f: X \to Y$ is a bijection, then $f^{-1}: Y \to X$ is also a bijection. In other words, $f: X \to Y$ is bijective iff f has an inverse.
- (c) $len^{-1}({3}) = {sss, ssu, sus, suu, uss, usu, uus, uuu}.$
- (d) len(s) = 1 = len(u) but $s \neq u$. So *len* is not injective and so it is not bijective. Thus len^{-1} does not exist by Theorem 7.2.3. (Recall that len^{-1} refers to the inverse function of *len*.)
- 4. Given any two bijections $f: A \to B$ and $g: B \to C$, prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Answer:

- 1. Since f and g are bijections, f^{-1} and g^{-1} are bijections by theorem 7.2.3, and $g \circ f$ and $f^{-1} \circ g^{-1}$ are also bijection by theorems 7.3.3 and 7.3.4.
- 2. Since $g \circ f$ is a bijection, $(g \circ f)^{-1}$ exists and is a bijection by theorem 7.2.3.
- 3. (To check the domains and codomains of $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$.)
 - 3.1. Domain and codomain of $g \circ f$ are A and C respectively, hence domain and codomain of $(g \circ f)^{-1}$ are C and A respectively.
 - 3.2. Domain and codomain of f^{-1} are B and A respectively, domain and codomain of g^{-1} are C and B respectively, hence domain and codomain of $f^{-1} \circ g^{-1}$ are C and A respectively.
 - 3.3. Therefore, $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$ have the same domain and codomain.
- 4. (To check that $(g \circ f)^{-1}(z)$ and $f^{-1} \circ g^{-1}(z)$ have the same image for all $z \in C$.)
 - 4.1. Let $z \in C$.
 - 4.2 Then $\exists y \in B$ such that z = g(y), or $y = g^{-1}(z)$ by definition of inverse function.
 - 4.3 Similarly, $\exists x \in A$ such that y = f(x), or $x = f^{-1}(y)$ by definition of inverse function.
 - 4.4. Hence $(g \circ f)(x) = g(f(x)) = g(y) = z$, or $(g \circ f)^{-1}(z) = x$ by definition of inverse function.
 - 4.5 Also, $(f^{-1} \circ g^{-1})(z) = f^{-1}(g^{-1}(z)) = f^{-1}(y) = x$.
 - 4.6. Therefore, $(g \circ f)^{-1}(z) = f^{-1} \circ g^{-1}(z)$ for all $z \in C$ from lines 4.4 and 4.5.
- 5. Therefore, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ from 3 and 4.

Theorem 7.2.3	Theorem 7.3.3	Theorem 7.3.4		
If $f: X \to Y$ is a bijection, then	If $f: X \to Y$ and $g: Y \to Z$ are both	If $f: X \to Y$ and $g: Y \to Z$ are both		
$f^{-1}: Y \to X$ is also a bijection.	injective, then $g\circ f$ is injective.	surjective, then $g\circ f$ is surjective.		

- 5. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by *Bool* the set {**true**, **false**}.
 - (a) $f: \mathbb{Q} \to \mathbb{Q};$ $x \mapsto 12x + 31.$
 - (b) $g:Bool^2 \rightarrow Bool;$ $(p,q) \mapsto p \land \sim q.$
 - (c) $h: Bool^2 \to Bool^2;$ $(p,q) \mapsto (p \land q, p \lor q).$
 - (d) $k: \mathbb{Z} \to \mathbb{Z};$ $x \mapsto \begin{cases} x, \text{ if } x \text{ is even;} \\ 2x - 1, \text{ if } x \text{ is odd.} \end{cases}$

Inverse function Let $f: X \to Y$. Then $g: Y \to X$ is an **inverse** of f iff $\forall x \in X \forall y \in Y (y = f(x) \Leftrightarrow x = g(y))$.

Answers:

- (a) We could prove that f is injective and surjective, and hence bijective. Here, we try another approach: if we manage to find an inverse function for f, then by Theorem 7.2.3, f is bijective.
 - 1. Note that for all $x, y \in \mathbb{Q}, y = 12x + 31 \Leftrightarrow x = (y 31)/12$.
 - 2. Define $f^*: \mathbb{Q} \to \mathbb{Q}$ by setting, for all $y \in \mathbb{Q}$, $f^*(y) = (y 31)/12$.
 - 3. Then whenever $x, y \in \mathbb{Q}, y = f(x) \Leftrightarrow x = f^*(y)$.
 - 4. Thus f^* in the inverse of f.
 - 5. Hence f is bijective (i.e. both injective and surjective) by Theorem 7.2.3.

(b)

- 1. g(false, true) = false = g(false, false), where $(false, true) \neq (false, false)$.
- 2. So *g* is not injective.
- 3. g(**true**, **false**) =**true**.
- 4. Lines 1 and 3 show that every element of the codomain *Bool* is in the range of *g*.
- 5. Hence *g* is surjective.

(c)

- 1. h(true, false) = (false, true) = g(false, true), where $(\text{true}, \text{false}) \neq (\text{false}, \text{true})$.
- 2. So *h* is not injective.
- 3. If $p, q, r \in Bool$ such that $h(p, q) = (\mathbf{true}, r)$, then
 - 3.1. $p \land q =$ true by the definition of h;
 - 3.2. $\therefore p =$ true
 - 3.3. $\therefore r = p \lor q =$ true by the definition of *h*.
- 4. So (**true**, **false**) in the codomain is not in the range of *h*.
- 5. Hence *h* is not surjective.

(d)

- 1. We first show that if x is an even integer, then k(x) is even.
 - 1.1. Let *x* be an even integer.
 - 1.2. Then k(x) = x by the definition of k.
 - 1.3. So k(x) is even.
- 2. Next we show that if x is an odd integer, then k(x) is odd.
 - 2.1. Let *x* be an odd integer.
 - 2.2. Then k(x) = 2x 1 = 2(x 1) + 1, where x 1 is an integer.
 - 2.3. So k(x) is odd.
- 3. Since every integer is either even or odd but not both, lines 1 and 2 tell us that, for every $x \in \mathbb{Z}$,
 - 3.1. x is even if and only if k(x) is even; and
 - 3.2. x is odd if and only if k(x) is odd.
- 4. Now we show that *k* is injective.
 - 4.1. Let $x_1, x_2 \in \mathbb{Z}$ such that $k(x_1) = k(x_2)$.
 - 4.2. Case 1: $k(x_1)$ is even.
 - 4.2.1. Then both x_1 and x_2 are even by line 3.1.
 - 4.2.2. So $x_1 = k(x_1) = k(x_2) = x_2$ by the definition of *k*.
 - 4.3. Case 2: $k(x_1)$ is odd.
 - 4.3.1. Then both x_1 and x_2 are odd by line 3.2.
 - 4.3.2. So $2x_1 1 = k(x_1) = k(x_2) = 2x_2 1$ by the definition of k.
 - 4.3.3. So $x_1 = x_2$.
 - 4.4. Since $k(x_1)$ is either even or odd, we conclude that $x_1 = x_2$ in any case.
 - 4.5. Therefore *k* is injective.
- 5. Finally, we prove by contradiction that *k* is not surjective.
 - 5.1. Suppose *k* is surjective.
 - 5.2. Note that 3 is in the codomain \mathbb{Z} .
 - 5.3. Use the surjectivity of k to find $x \in \mathbb{Z}$ such that k(x) = 3.
 - 5.4. Note that k(x) = 3 is odd and so x is odd by line 3.2.
 - 5.5. Thus 3 = k(x) = 2x 1 by the choice of x and the definition of k.
 - 5.6. Solving gives $x = \frac{3+1}{2} = 2$ which is even.
 - 5.7. This contradicts line 5.4 that x is odd.
 - 5.8. Therefore *k* is not surjective.

6. [AY2022/23 Semester 2 Exam Questions] The following definitions are given.

Given a function $f: A \rightarrow B$, we say that

- $g: B \to A$ is a **left inverse** of f if and only if g(f(a)) = a for all $a \in A$.
- $h: B \to A$ is a **right inverse** of f if and only if f(h(b)) = b for all $b \in B$.

You do not need to provide proofs for the following parts.

- (a) Which of the 4 functions given in question 5 have a left inverse?
- (b) Which of the 4 functions given in question 5 have a right inverse?
- (c) Which of the following statements are true?
 - (i) If a function has a left inverse, then it has a right inverse.
 - (ii) If a function has a right inverse, then it has a left inverse.

Answers:

(a) Only f and k. (b) Only f and g. (c) Neither is true.

Note that

- a function is injective if and only if it has a left inverse;
- a function is surjective if and only if it has a right inverse.

7. We have shown in Theorem 7.3.3 that if $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f$ is injective.

Now, let $f: B \to C$. Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.

Answer:

- 1. Suppose g is a function with domain C such that $g \circ f$ is injective.
- 2. Let $x_1, x_2 \in B$ such that $f(x_1) = f(x_2)$.
- 3. Then $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$ by the definition of $g \circ f$.
- 4. So $x_1 = x_2$ as $g \circ f$ is injective by the choice of g.
- 5. Therefore f is injective.

8. Let $A = \{1,2,3\}$. The *order* of a bijection $f: A \to A$ is defined to be the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n-\text{many } f's} = id_A$$

Define functions $g, h: A \rightarrow A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of $g, h, g \circ h$, and $h \circ g$.

Answers: The orders for $g, h, g \circ h$, and $h \circ g$ are 2, 2, 3 and 3 respectively.

$$(g \circ g)(1) = g(g(1)) = g(2) = 1$$

$$(g \circ g)(2) = g(g(2)) = g(1) = 2$$

$$(g \circ g)(3) = g(g(3)) = g(3) = 3$$

Therefore $g \circ g$ is an identity function on A . Hence $g \circ g$ has an order of 2.

Similar working for *h*.

Let
$$s = g \circ h$$
.
 $s(1) = (g \circ h)(1) = g(h(1)) = g(1) = 2$
 $s(2) = (g \circ h)(2) = g(h(2)) = g(3) = 3$
 $s(3) = (g \circ h)(3) = g(h(3)) = g(2) = 1$
 $(s \circ s \circ s)(1) = s(s(s(1))) = s(s(2)) = s(3) = 1$
 $(s \circ s \circ s)(2) = s(s(s(2))) = s(s(3)) = s(1) = 2$
 $(s \circ s \circ s)(3) = s(s(s(3))) = s(s(1)) = s(2) = 3$

Therefore $(g \circ h) \circ (g \circ h) \circ (g \circ h)$ is an identity function on A. Hence $g \circ h$ has an order of 3. Similar working for $h \circ g$.

- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$. Justify your answers for the following:
 - (a) Is it always the case that $X \subseteq f^{-1}(f(X))$? Is it always the case that $f^{-1}(f(X)) \subseteq X$?
 - (b) Is it always the case that $Y \subseteq f(f^{-1}(Y))$? Is it always the case that $f(f^{-1}(Y)) \subseteq Y$?

Note that f(X) is the (setwise) image of X, and $f^{-1}(Y)$ the (setwise) preimage of Y under f, where $X \subseteq A$ and $Y \subseteq B$. Without the colored font to disambiguate the two kinds of functions, it should also be clear what f(U) denotes, depending on whether $U \in A$ or $U \in P(A)$.

Let $f: X \to Y$ be a function from set X to set Y. • If $A \subseteq X$, then let $f(A) = \{f(x) : x \in A\}$. • If $B \subseteq Y$, then let $f^{-1}(B) = \{x \in X : f(x) \in B\}$ We call f(A) the (setwise) image of A, and $f^{-1}(B)$ the (setwise) preimage of B under f.

Answers:

- (a) First, we show it is always the case that $X \subseteq f^{-1}(f(X))$.
 - 1. Let $x \in X$.
 - 2. Then $f(x) \in f(X)$ by the definition of f(X).
 - 3. So $x \in f^{-1}(f(X))$ by the definition of $f^{-1}(f(X))$.

Next, we show it is possible that $f^{-1}(f(X)) \not\subseteq X$.

- 1. Consider $f: \{-1,1\} \rightarrow \{0\}$ where f(-1) = 0 = f(1), and $X = \{1\}$.
- 2. Note that $f(X) = \{f(1)\} = \{0\}$.
- 3. Since f(-1) = 0, we know $-1 \in f^{-1}(\{0\}) = f^{-1}(f(X))$.
- 4. As $-1 \notin \{1\} = X$, we deduce that $f^{-1}(f(X)) \nsubseteq X$.

(Other counterexamples are possible.)

- (b) First, we show it is always the case that $f(f^{-1}(Y)) \subseteq Y$.
 - 1. Take any $y \in f(f^{-1}(Y))$.
 - 2. Then we have some $x \in f^{-1}(Y)$ such that y = f(x), by the definition of $f(f^{-1}(Y))$.
 - 3. Now, as $x \in f^{-1}(Y)$, we get $y' \in Y$ which makes y' = f(x).
 - 4. Since f is a function, this implies $y = f(x) = y' \in Y$ as required.

Next, we show it is possible that $Y \not\subseteq f(f^{-1}(Y))$?.

- 1. Consider $f: \{0\} \rightarrow \{-1,1\}$ where f(0) = 1, and $Y = \{-1\}$.
- 2. Note that no $x \in \{0\}$ makes f(x) = -1.
- 3. So $f^{-1}(Y) = \emptyset$ by the definition of $f^{-1}(Y)$.
- 4. This entails $f(f^{-1}(Y)) = \emptyset \not\supseteq \{-1\} = Y$.

(Other counterexamples are possible.)

10. Consider the equivalence relation \sim on \mathbb{Q} defined by setting, for all $x, y \in \mathbb{Q}$,

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}.$$

Lemma Rel.1 Equivalence Classes

(ii) [x] = [y];

are equivalent for all $x, y \in A$.

Let \sim be an equivalence relation on a set A. The following

(iii) $[x] \cap [y] \neq \emptyset$.

Define addition and multiplication on \mathbb{Q}/\sim as follows: whenever $[x], [y] \in \mathbb{Q}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

(i) $x \sim y$;

- (a) Is + well defined on \mathbb{Q}/\sim ?
- (b) Is · well defined on \mathbb{Q}/\sim ?

Prove that your answers are correct.

Answers:

(a) We claim that + is well defined on \mathbb{Q}/\sim .

- 1. Let $[x_1], [y_1], [x_2], [y_2], \in \mathbb{Q}/\sim$ such that $[x_1] = [x_2]$ and $[y_1] = [y_2]$.
- 2. So $x_1 \sim x_2$ and $y_1 \sim y_2$ by Lemma Rel.1.
- 3. Use the definition of ~ to find $k, l \in \mathbb{Z}$ such that $x_1 x_2 = k$ and $y_1 y_2 = l$.
- 4. Note that $(x_1 + y_1) (x_2 + y_2) = (x_1 x_2) + (y_1 y_2) = k + l \in \mathbb{Z}$.
- 5. So $x_1 + y_1 \sim x_2 + y_2$ by the definition of \sim .
- 6. Hence $[x_1] + [y_1] = [x_1 + y_1] = [x_2 + y_2] = [x_2] + [y_2]$ by Lemma Rel.1.
- (b) We claim that \cdot is not well defined on \mathbb{Q}/\sim .

1. Note that
$$\frac{1}{2} - \frac{-1}{2} = 1 \in \mathbb{Z}$$
.

- 2. This implies $\frac{1}{2} \sim \frac{-1}{2}$ and so $\left[\frac{1}{2}\right] = \left[\frac{-1}{2}\right]$ by Lemma Rel.1.
- 3. Note that $\frac{1}{4} \frac{-1}{4} = \frac{1}{2} \notin \mathbb{Z}$.
- 4. This implies $\frac{1}{4} \not\sim \frac{-1}{4}$ and so $\left[\frac{1}{4}\right] \neq \left[\frac{-1}{4}\right]$ by Lemma Rel.1.
- 5. Therefore, according to the definition of \cdot on \mathbb{Q}/\sim ,

[<u>1</u>]	$\left[\frac{1}{2}\right]_{=}$	$\begin{bmatrix} 1 & 1 \end{bmatrix}$	$=\left[\frac{1}{4}\right]\neq$	$\begin{bmatrix} -1 \end{bmatrix}_{-1}$	$\begin{bmatrix} 1 & -1 \end{bmatrix}$] = [1]	$\left[\frac{-1}{2} \right]$
2	2	2 2			2 2] _ [2]	[2]

11. Consider the addition function + under \mathbb{Q} .

Consider a new function + you constructed in Q10 for addition on \mathbb{Q}/\sim as follows:

whenever $[x], [y] \in \mathbb{Q}/\sim$, we have [x] + [y] = [x + y].

The type signature for function + under \mathbb{Q} would be:

 $+:(\mathbb{Q},\mathbb{Q})\to\mathbb{Q}$

What is the type signature of the new function + which you just constructed via the above equality relation?

Answer:

 $+: (\mathbb{Q}/\sim, \mathbb{Q}/\sim) \rightarrow \mathbb{Q}/\sim$