CS1231S: Discrete Structures Tutorial #6: Functions

(Week 8: 7 – 11 October 2024)

I. Discussion Questions

- D1. Which of the following is a function? If it is not a function, explain.
 - (a) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 3 \mid z. \end{cases}$
 - (b) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 2 \nmid z. \end{cases}$
 - (c) Define $f: \mathbb{R} \to \mathbb{Z}$ by $\forall x \in \mathbb{R}$, f(x) = 2x.
 - (d) Define $f: \mathbb{Z} \to \mathbb{R}$ by $\forall x \in \mathbb{Z}$, f(x) = 2x.
- D2. Let function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ be defined by setting, $\forall x. y \in \mathbb{Z}$, $f(x, y) = \frac{x+y}{3}$. Find three distinct pre-images of 2.
- D3. Definitions: Given any real number *x*,
 - (1) the **floor** of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \le x < n + 1$;
 - (2) the **ceiling** of x, denoted [x], is the unique integer n such that $n 1 < x \le n$.

Let $f, g: \mathbb{Q} \to \mathbb{Q}$ be defined by setting, for each $x \in \mathbb{Q}$,

f(x) = [x] + 1 and g(x) = [x].

What is the range of f? What is the range of g? Is f = g? Why?

- D4. To prove that a composition of two surjections is a surjection, Aiken wrote:
 - 1. Suppose $f: X \to Y$ and $g: Y \to Z$ are surjections.
 - 2. Then $\forall y \in Y \exists x \in X$ such that f(x) = y as f is surjective,
 - 3. and $\forall z \in Z \exists y \in Y$ such that g(y) = z as g is surjective.
 - 4. So $(g \circ f)(x) = g(f(x)) = g(y) = z$.
 - 5. Hence $g \circ f$ is a surjection.

Explain the mistakes in this "proof".

II. Tutorial Questions

1. Define the following relations on \mathbb{N} :

 $\begin{aligned} &\forall x, y \in \mathbb{N} \; (x \; R_1 \; y \; \Leftrightarrow x^2 = y^2); \\ &\forall x, y \in \mathbb{N} \; (x \; R_2 \; y \; \Leftrightarrow y \mid x); \\ &\forall x, y \in \mathbb{N} \; (x \; R_3 \; y \; \Leftrightarrow y = x + 1). \end{aligned}$

Are the relations R_1 , R_2 and R_3 functions? Prove or disprove.

2. Let $A = \{a, b\}$ and S be the set of all strings over A. (See Lecture 7 section 7.1.2 for the definition of string.)

Define a concatenate-by-*a*-on-the-left function $C: S \rightarrow S$ by C(s) = as for all $s \in S$.

- (a) Is *C* an injection? Prove or give a counterexample.
- (b) Is C a surjection? Prove or give a counterexample.
- 3. Let $A = \{s, u\}$. Define a function $len: A^* \to \mathbb{Z}_{\geq 0}$ by setting $len(\sigma)$ to be the length of σ for each $\sigma \in A^*$.
 - (a) What is *len(suu)*?
 - (b) What is *len*({*ε*, *ss*, *uu*, *ssss*})?
 - (c) What is $len^{-1}(\{3\})$?
 - (d) Does len^{-1} exist? Explain your answer.
- 4. Given any two bijections $f: A \to B$ and $g: B \to C$, prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 5. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by *Bool* the set {**true**, **false**}.
 - (a) $f: \mathbb{Q} \to \mathbb{Q};$ $x \mapsto 12x + 31.$
 - (b) $g:Bool^2 \rightarrow Bool;$ $(p,q) \mapsto p \land \sim q.$
 - (c) $h: Bool^2 \to Bool^2;$ $(p,q) \mapsto (p \land q, p \lor q).$
 - (d) $k: \mathbb{Z} \to \mathbb{Z};$ $x \mapsto \begin{cases} x, \text{ if } x \text{ is even;} \\ 2x - 1, \text{ if } x \text{ is odd.} \end{cases}$

6. [AY2022/23 Semester 2 Exam Questions] The following definitions are given.

Given a function $f: A \rightarrow B$, we say that

- $g: B \to A$ is a **left inverse** of f if and only if g(f(a)) = a for all $a \in A$.
- $h: B \to A$ is a **right inverse** of f if and only if f(h(b)) = b for all $b \in B$.

You do not need to provide proofs for the following parts.

- (a) Which of the 4 functions given in question 5 have a left inverse?
- (b) Which of the 4 functions given in question 5 have a right inverse?
- (c) Which of the following statements are true?
 - (i) If a function has a left inverse, then it has a right inverse.
 - (ii) If a function has a right inverse, then it has a left inverse.
- 7. We have shown in Theorem 7.3.3 that if $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f$ is injective. Now, let $f: B \to C$. Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.
- 8. Let $A = \{1,2,3\}$. The **order** of a bijection $f: A \to A$ is defined to be the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n-\operatorname{many} f' \mathsf{s}} = id_A.$$

Define functions $g, h: A \rightarrow A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$. Justify your answers for the following:
 - (a) Is it always the case that $X \subseteq f^{-1}(f(X))$? Is it always the case that $f^{-1}(f(X)) \subseteq X$?
 - (b) Is it always the case that $Y \subseteq f(f^{-1}(Y))$? Is it always the case that $f(f^{-1}(Y)) \subseteq Y$?

Note that f(X) is the (setwise) image of X, and $f^{-1}(Y)$ the (setwise) preimage of Y under f, where $X \subseteq A$ and $Y \subseteq B$. Without the colored font to disambiguate the two kinds of functions, it should also be clear what f(U) denotes, depending on whether $U \in A$ or $U \in P(A)$.

10. Consider the equivalence relation ~ on \mathbb{Q} defined by setting, for all $x, y \in \mathbb{Q}$,

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}.$$

Define addition and multiplication on \mathbb{Q}/\sim as follows: whenever $[x], [y] \in \mathbb{Q}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

- (a) Is + well defined on \mathbb{Q}/\sim ?
- (b) Is well defined on \mathbb{Q}/\sim ?

Prove that your answers are correct.

11. Consider the addition function + under \mathbb{Q} .

Consider a new function + you constructed in Q10 for addition on \mathbb{Q}/\sim as follows:

whenever $[x], [y] \in \mathbb{Q}/\sim$, we have [x] + [y] = [x + y].

The type signature for function + under \mathbb{Q} would be:

 $+:(\mathbb{Q},\mathbb{Q})\to\mathbb{Q}$

What is the type signature of the new function + which you just constructed via the above equality relation?