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CS1231S: Discrete Structures 

Tutorial #7: Mathematical Induction and Recursion 
(Week 9: 14 – 18 October 2024) 

Answers 
 

 

In writing Mathematical Induction proofs, please follow the format we use in class. 

1. Many common mistakes are spotted in Mathematical Induction proofs. For each of the 
following, point out the mistake. (If you follow the format we introduced in class, it will help 
you avoid making some of these mistakes.) 

 Consider this problem: Prove by mathematical induction that for all 𝑛 ∈ ℤ+, 

1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
 

 Define the statement 𝑃(𝑛) to be “1 + 2 + ⋯ 𝑛 = 𝑛(𝑛 + 1)/2”. 

(a) Inductive hypothesis: Assume that 𝑃(𝑘) is true. 

 Inductive step: ∑ 𝑖𝑘+1
𝑖=1 = (𝑘 + 1) + ∑ 𝑖𝑘

𝑖=1 = (𝑘 + 1) + 𝑃(𝑘) = ⋯ 

 
(b) Inductive step: 

1. 1 + 2 + ⋯ + 𝑘 + (𝑘 + 1) =
(𝑘+1)(𝑘+2)

2
 

2. Hence 
𝑘(𝑘+1)

2
+ (𝑘 + 1) =

(𝑘+1)(𝑘+2)

2
 (by the inductive hypothesis) 

3. Hence 
𝑘(𝑘+1)+2(𝑘+1)

2
=

(𝑘+1)(𝑘+2)

2
 (by basic algebra) 

4. Hence 
(𝑘+1)(𝑘+2)

2
=

(𝑘+1)(𝑘+2)

2
. 

5. Since (4) is a tautology, (1) must be true. 

 
(c) Inductive hypothesis: Assume that 𝑃(𝑘) is true for all 𝑘 ∈ ℤ+. 

Answers: 

(a) Logical propositions/statements like 𝑃(𝑘) are not values and cannot be added to numbers! 

(b) (Proof going the wrong way.) Make sure you use 𝑃(𝑘) to prove 𝑃(𝑘 + 1) and not the other 
way round. The proof here starts off with 𝑃(𝑘 + 1) and ends using 𝑃(𝑘) to prove an 
identity, which does not prove anything.  Make sure you do not assume 𝑃(𝑘 + 1)! 

(c) (Assuming too much.) Note that “Assume that 𝑃(𝑘) is true for all 𝑘 ∈ ℤ+” is the same 
statement as “Assume that 𝑃(𝑛) is true for all 𝑛 ∈ ℤ+” which is what you are supposed to 
prove. So, there is nothing left to prove! Make sure you don’t assume everything in the 
inductive hypothesis.  

Note: This question is based on 
http://www.cs.cmu.edu/~arielpro/15251f17/notes/induction-pitfalls.pdf  

 

  

http://www.cs.cmu.edu/~arielpro/15251f17/notes/induction-pitfalls.pdf
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2. Prove by induction that for all 𝑛 ∈ ℤ+, 

𝟏𝟐 + 𝟐𝟐 + ⋯ + 𝒏𝟐 =
𝟏

𝟔
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏). 

Answer: 

1. For each 𝑛 ∈ ℤ+, let 𝑃(𝑛) ≡ 12 + 22 + ⋯ + 𝑛2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1). 

2. (Basis step) 𝑃(1) is true because 12 = 1 =
1

6
× 1 × (1 + 1) × (2 × 1 + 1). 

3. (Inductive step) 

3.1. Let 𝑘 ∈ ℤ+ such that 𝑃(𝑘) is true, i.e. 12 + 22 + ⋯ + 𝑘2 =
1

6
𝑘(𝑘 + 1)(2𝑘 + 1) 

3.2. Then 12 + 22 + ⋯ + 𝑘2 + (𝑘 + 1)2 

3.3.    =
1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2  by the inductive hypothesis 

3.4.    =
1

6
(𝑘 + 1)(𝑘(2𝑘 + 1) + 6(𝑘 + 1))  

3.5.    =
1

6
(𝑘 + 1)(2𝑘2 + 7𝑘 + 6) 

3.6.    =
1

6
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 

3.7.    =
1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1)  by basic algebra 

3.8. Thus 𝑃(𝑘 + 1) is true. 

4. Therefore, ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true by MI. 
 

3. Let 𝑥 ∈ ℝ≥−1. Prove by induction that 𝟏 + 𝒏𝒙 ≤ (𝟏 + 𝒙)𝒏 for all 𝑛 ∈ ℤ+. 

Answer: 
1. For each 𝑛 ∈ ℤ+, let 𝑃(𝑛) ≡ (1 + 𝑛𝑥 ≤ (1 + 𝑥)𝑛). 

2. (Basis step) 𝑃(1) is true because 1 + 1𝑥 = 1 + 𝑥 = (1 + 𝑥)1. 

3. (Inductive step) 
3.1. Let 𝑘 ∈ ℤ+ such that 𝑃(𝑘) is true, i.e. 1 + 𝑘𝑥 ≤ (1 + 𝑥)𝑘. 
3.2. Then (1 + 𝑥)𝑘+1 

3.3.    = (1 + 𝑥)𝑘(1 + 𝑥) 
3.4.    ≥ (1 + 𝑘𝑥)(1 + 𝑥)  by the inductive hypothesis 
3.5.    = 1 + (𝑘 + 1)𝑥 + 𝑘𝑥2  
3.6.    ≥ 1 + (𝑘 + 1)𝑥  as 𝑘 ≥ 1 and 𝑥2 ≥ 0, so 𝑘𝑥2 ≥ 0 
3.7. Thus 𝑃(𝑘 + 1) is true. 

4. Therefore, ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true by MI. 
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4. Let 𝑎 be an odd integer. Prove by induction that 𝟐𝒏+𝟐 | (𝒂𝟐𝒏
− 𝟏) for all 𝑛 ∈ ℤ+. 

 Here you may use without proof the fact that the product of any two consecutive integers is 
even. (Prove that as your own exercise – it’s very simple.) 

 (Note that 𝑎𝑏𝑐
= 𝑎(𝑏𝑐) by convention.) 

Answer: 

1. For each 𝑛 ∈ ℤ+, let 𝑃(𝑛) ≡ 2𝑛+2 | 𝑎2𝑛
− 1. 

2. (Basis step) 
2.1. 𝑎 = 2𝑝 + 1 for some integer 𝑝 by the definition of odd integers. 

2.2. Then 𝑎21
− 1 = 𝑎2 − 1 = (𝑎 − 1)(𝑎 + 1) = (2𝑝 + 1 − 1)(2𝑝 + 1 + 1) = 4𝑝(𝑝 + 1). 

2.3. Now 𝑝(𝑝 + 1) is even (given by the question), so 𝑝(𝑝 + 1) = 2𝑚 for some integer 
𝑚 by the definition of even integers.  

2.4. Hence, 𝑎21
− 1 = 4(2𝑚) = 8𝑚 = 23𝑚. 

2.5. So 21+2 | 𝑎21
− 1 and hence 𝑃(1) is true. 

3. (Inductive step) 

3.1. Let 𝑘 ∈ ℤ+ such that 𝑃(𝑘) is true, i.e., 2𝑘+2 | 𝑎2𝑘
− 1. 

3.2. So 𝑎2𝑘
− 1 = 2𝑘+2𝑚 for some integer 𝑚 by the definition of divisibility. 

3.3. Then  𝑎2𝑘+1
− 1 = 𝑎2𝑘×2 − 1 

3.4.  = (𝑎2𝑘
)

2

− 1 

3.5.  = (𝑎2𝑘
− 1)(𝑎2𝑘

+ 1) 

3.6.  = (2𝑘+2𝑚 )((2𝑘+2𝑚 + 1) + 1) by line 3.2 

3.7.  = 2𝑘+3𝑚(2𝑘+1𝑚 + 1 ) 

3.8. Thus 2𝑘+3𝑚 | 𝑎2𝑘+1
− 1 and so 𝑃(𝑘 + 1) is true. 

4. Therefore, ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true by MI. 
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5. Prove by induction that 
∀𝒏 ∈ ℤ≥𝟖 ∃𝒙, 𝒚 ∈ ℕ (𝒏 = 𝟑𝒙 + 𝟓𝒚). 

 (In other words, any integer-valued transaction of at least $8 can be carried out using only $3 
and $5 notes.) 

Answer: 
1. For each 𝑛 ∈ ℤ≥8, let 𝑃(𝑛) ≡ ∃𝑥, 𝑦 ∈ ℕ (𝑛 = 3𝑥 + 5𝑦). 
2. (Basis step) 𝑃(8) is true as 8 = 3(1) + 5(1). 
3. (Inductive step) 

3.1. Let 𝑘 ∈ ℤ≥8 such that 𝑃(𝑘) is true. 
3.2. Find 𝑥, 𝑦 ∈ ℕ such that 𝑘 = 3𝑥 + 5𝑦. 
3.3. Case 1: 𝑦 > 0. 

3.3.1. Then 𝑘 + 1 = (3𝑥 + 5𝑦) + 1 by the choice of 𝑥, 𝑦. 
3.3.2.  = 3(𝑥 + 2) + 5(𝑦 − 1). 
3.3.3. 𝑦 − 1 ∈ ℕ as 𝑦 > 0. 
3.3.4. As 𝑥 + 2 ∈ ℕ and 𝑦 − 1 ∈ ℕ, so 𝑃(𝑘 + 1) is true. 

3.4. Case 2: 𝑦 = 0. 
3.4.1. Then 𝑘 = 3𝑥 + 5(0) = 3𝑥. 
3.4.2. ∴ 𝑥 = 𝑘/3 ≥ 8/3 as 𝑘 ≥ 8. 
3.4.3. ∴ 𝑥 ≥ 3  as 𝑥 ∈ ℕ. 
3.4.4. Thus 𝑘 + 1 = 3𝑥 + 1 = 3(𝑥 − 3) + 5(2). 
3.4.5. As 𝑥 − 3 ∈ ℕ and 2 ∈ ℕ, So 𝑃(𝑘 + 1) is true. 

3.5. Hence 𝑃(𝑘 + 1) is true for all cases. 
4. Therefore, ∀𝑛 ∈ ℕ 𝑃(𝑛) is true by MI. 

 
Alternative answer: 

1. For each 𝑛 ∈ ℤ≥8, let 𝑃(𝑛) ≡ ∃𝑥, 𝑦 ∈ ℕ (𝑛 = 3𝑥 + 5𝑦). 
2. (Basis step)  

2.1. 𝑃(8) is true because 8 = 3(1) + 5(1). 
2.2. 𝑃(9) is true because 9 = 3(3) + 5(0). 
2.3. 𝑃(10) is true because 10 = 3(0) + 5(2). 

3. (Inductive step) 
3.1. Let 𝑘 ∈ ℤ≥8 such that 𝑃(8), 𝑃(9), ⋯ , 𝑃(𝑘 + 2) are true. 
3.2. Apply 𝑃(𝑘) to find 𝑥, 𝑦 ∈ ℕ such that 𝑘 = 3𝑥 + 5𝑦.  
3.3. Then 𝑘 + 3 = (3𝑥 + 5𝑦) + 3  by the choice of 𝑥, 𝑦. 
3.4.  = 3(𝑥 + 1) + 5𝑦 where 𝑥 + 1, 𝑦 ∈ ℕ. 
3.5. Hence 𝑃(𝑘 + 3) is true. 

4. Therefore, ∀𝑛 ∈ ℕ 𝑃(𝑛) is true by Strong MI. 
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6. Prove by induction that every positive integer can be written as a sum of distinct non-negative 
integer powers of 2, i.e., 

∀𝒏 ∈ ℤ+ ∃𝒍 ∈ ℤ+ ∃𝒊𝟏, 𝒊𝟐, ⋯ , 𝒊𝒍 ∈ ℕ (𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒍  ∧ 𝒏 = 𝟐𝒊𝟏 + 𝟐𝒊𝟐 + ⋯ + 𝟐𝒊𝒍). 

Answer: 
1. For each 𝑛 ∈ ℤ+, let 𝑃(𝑛) be the proposition 

   “∃𝑙 ∈ ℤ+ ∃𝑖1, 𝑖2, ⋯ , 𝑖𝑙 ∈ ℕ (𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙  ∧ 𝑛 = 2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙)” 

2. (Basis step) 𝑃(1) is true as 1 = 20. 

3. (Inductive step) 
3.1. Let 𝑘 ∈ ℤ+ such that 𝑃(1), 𝑃(2), ⋯ , 𝑃(𝑘) are true. 
3.2. Find 𝑚 ∈ ℤ such that 𝑘 + 1 = 2𝑚 or 𝑘 + 1 = 2𝑚 + 1. (This is possible because 

𝑘 + 1 is either even or odd, by lecture #1 assumption 1.) 
3.3. Note that 2𝑚 ≤ 𝑘 + 1 as 𝑘 + 1 = 2𝑚 or 𝑘 + 1 = 2𝑚 + 1; 
3.4.  ≤ 𝑘 + 𝑘 as 𝑘 ≥ 1; 
3.5.  = 2𝑘. 
3.6. So 𝑚 ≤ 𝑘. 
3.7. Also, 2𝑚 + 1 ≥ 𝑘 + 1 as 𝑘 + 1 = 2𝑚 or 𝑘 + 1 = 2𝑚 + 1; 

3.8. So 2𝑚 ≥ 𝑘 ≥ 1 or 𝑚 ≥
1

2
 or 𝑚 ≥ 1 as 𝑚 ∈ ℤ and 1 is the smallest integer ≥

1

2
. 

3.9. By lines 3.6 and 3.8, 1 ≤ 𝑚 ≤ 𝑘, and so 𝑃(𝑚) is true by the inductive hypothesis. 
3.10. Apply 𝑃(𝑚) to find 𝑙 ∈ ℤ+ and 𝑖1, 𝑖2, ⋯ , 𝑖𝑙 ∈ ℕ such that 

  𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙    and   𝑚 = 2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙. 

3.11. Case 1: 𝑘 + 1 = 2𝑚. 

3.11.1. Then 𝑘 + 1 = 2(2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙) 

3.11.2.  = 2𝑖1+1 + 2𝑖2+1 + ⋯ + 2𝑖𝑙+1. 
3.11.3. Also, 𝑖1 + 1 < 𝑖2 + 1 < ⋯ < 𝑖𝑙 + 1 as 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙. 
3.11.4. So 𝑃(𝑘 + 1) is true. 

3.12. Case 1: 𝑘 + 1 = 2𝑚 + 1. 

3.12.1. Then 𝑘 + 1 = 2(2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙) + 1 

3.12.2.  = 20 + 2𝑖1+1 + 2𝑖2+1 + ⋯ + 2𝑖𝑙+1. 
3.12.3. Also, 0 < 𝑖1 + 1 < 𝑖2 + 1 < ⋯ < 𝑖𝑙 + 1 as 0 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙. 
3.12.4. So 𝑃(𝑘 + 1) is true. 

3.13. Hence 𝑃(𝑘 + 1) is true for all cases. 

4. Therefore, ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true by Strong MI. 
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Alternative answer (not for the faint-hearted): 
1. For each 𝑛 ∈ ℤ+, let 𝑃(𝑛) be the proposition 

   “∃𝑙 ∈ ℤ+ ∃𝑖1, 𝑖2, ⋯ , 𝑖𝑙 ∈ ℕ (𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙  ∧ 𝑛 = 2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙)” 

2. (Basis step) 𝑃(1) is true as 1 = 20. 

3. (Inductive step) 
3.1. Let 𝑘 ∈ ℤ+ such that 𝑃(𝑘) is true. 
3.2. Apply this assumption to obtain 𝑙 ∈ ℤ+ and 𝑖1, 𝑖2, ⋯ , 𝑖𝑙 ∈ ℕ such that 

  𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙    and   𝑘 = 2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙. 

3.3. Since 𝑘 < 2𝑘, we know 𝑘 is an element of the set ℕ \ {𝑖1, 𝑖2, ⋯ , 𝑖𝑙}. 
3.4. By the Well-Ordering Principle, this set has a minimum, say 𝑚. 
3.5. Find 𝑗 ∈ {0,1, ⋯ , 𝑙} such that 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑗 < 𝑚 < 𝑖𝑗+1 < ⋯ < 𝑖𝑙. 

3.6. The minimality of 𝑚 tells us 0,1,2, ⋯ , 𝑚 − 1 ∈ {𝑖1, 𝑖2, ⋯ , 𝑖𝑙}. 
3.7. Thus 0,1,2, ⋯ , 𝑚 − 1 ∈ {𝑖1, 𝑖2, ⋯ , 𝑖𝑗} by the choice of 𝑗. 

3.8. The choice of 𝑗 also tell us 𝑖1, 𝑖2, ⋯ , 𝑖𝑗 ∈ {0,1,2, ⋯ , 𝑚 − 1}. 

3.9. From these, we deduce that {𝑖1, 𝑖2, ⋯ , 𝑖𝑗} = {0,1,2, ⋯ , 𝑚 − 1}. 

3.10. Now, 𝑘 + 1 = 1 + 2𝑖1 + 2𝑖2 + ⋯ + 2𝑖𝑙 by line 3.2; 

3.11.  = 20 + 20 + 21 + 22 + ⋯ + 2𝑚−1 + 2𝑖𝑗+1 + ⋯ + 2𝑖𝑙  by line 3.9; 

3.12.  = 21 + 21 + 22 + ⋯ + 2𝑚−1 + 2𝑖𝑗+1 + ⋯ + 2𝑖𝑙  

3.13.  = 22 + 22 + ⋯ + 2𝑚−1 + 2𝑖𝑗+1 + ⋯ + 2𝑖𝑙  

3.14.  = ⋯ = 2𝑚−1 + 2𝑚−1 + 2𝑖𝑗+1 + ⋯ + 2𝑖𝑙  

3.15.  = 2𝑚 + 2𝑖𝑗+1 + ⋯ + 2𝑖𝑙  
3.16. So 𝑃(𝑘 + 1) is true. 

4. Therefore, ∀𝑛 ∈ ℤ+ 𝑃(𝑛) is true by MI. 
 
7. Let 𝑎0, 𝑎1, 𝑎2 ⋯  be the sequence satisfying  

  𝑎0 = 0,     𝑎1 = 2,     𝑎2 = 7,     and     𝑎𝑛+3 = 𝑎𝑛+2 + 𝑎𝑛+1 + 𝑎𝑛 

 for all 𝑛 ∈ ℕ. Prove by induction that 𝒂𝒏 < 𝟑𝒏 for all 𝑛 ∈ ℕ. 

Answer: 
1. For each 𝑛 ∈ ℕ, let 𝑃(𝑛) ≡ 𝑎𝑛 < 3𝑛. 

2. (Basis step)  
 𝑃(0), 𝑃(1), 𝑃(2) are true as 𝑎0 = 0 < 1 = 30, 𝑎1 = 2 < 3 = 31, and 𝑎2 = 7 < 9 = 32. 

3. (Inductive step) 
3.1. Let 𝑘 ∈ ℕ such that 𝑃(0), 𝑃(1), ⋯ , 𝑃(𝑘 + 2) are true. 

3.2. 𝑃(𝑘), 𝑃(𝑘 + 1), 𝑃(𝑘 + 2) are true means 𝑎𝑘 < 3𝑘 , 𝑎𝑘+1 < 3𝑘+1, 𝑎𝑘+2 < 3𝑘+2. 
3.3. 𝑎𝑘+3 = 𝑎𝑘+2 + 𝑎𝑘+1 + 𝑎𝑘 by the definition of 𝑎𝑘+3; 
3.4.  < 3𝑘+2 + 3𝑘+1 + 3𝑘 by the inductive hypothesis; 
3.5.  < 3𝑘+2 + 3𝑘+2 + 3𝑘+2 

3.6.  = 3(3𝑘+2) = 3𝑘+3. 
3.7. Thus 𝑃(𝑘 + 3) is true. 

4. Therefore, ∀𝑛 ∈ ℕ 𝑃(𝑛) is true by Strong MI. 
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8. [Adapted from AY2023/24 Semester 1 exam] 
Consider the Fibonacci function:  

  𝐹(0)  = 0; 𝐹(1) = 1; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 𝐹(𝑛 − 1), 𝑛 ≥ 1. 

 One interesting property of this function can be expressed as follows: 

    𝑃(𝑎, 𝑏) ≡ 𝐹(𝑎 + 𝑏) = (𝐹(𝑎 + 1) × 𝐹(𝑏) + 𝐹(𝑎) × 𝐹(𝑏 − 1)),  ∀𝑎 ≥ 0, 𝑏 ≥ 1. 

 In your proofs for the parts below, you may use “basic algebra” for 
identity/commutative/associative laws of addition and multiplication, but if the distributive law 
is used, you must state it explicitly. 

(a) There are a few induction schemes possible to solve part (b). For this question, use the 
following basis steps: 𝑃(0, 𝑏) and 𝑃(1, 𝑏),  for all 𝑏 ≥ 1. Prove these basis steps. 

(b) Let 𝑏 ∈ ℕ. Prove that 

  𝑃(𝑛 − 1, 𝑏) ∧ 𝑃(𝑛, 𝑏) → 𝑃(𝑛 + 1, 𝑏) for all 𝑛 ∈ ℤ+. 

Answers: 
(a) 𝑃(0, 𝑏): 

1. 𝐹(0 + 𝑏) = 𝐹(𝑏) 

2.  = (1𝐹(𝑏) + 0𝐹(𝑏 − 1))    

3.  = (𝐹(1)𝐹(𝑏) + 𝐹(0)𝐹(𝑏 − 1))   by substituting 𝐹(1) = 1 and 𝐹(0) = 0 

4.  = (𝐹(0 + 1)𝐹(𝑏) + 𝐹(0)𝐹(𝑏 − 1))   

5. Therefore 𝑃(0, 𝑏) is true. 

 𝑃(1, 𝑏): 
1. 𝐹(1 + 𝑏) = 𝐹(𝑏 + 1) 

2.  = (1𝐹(𝑏) + 1𝐹(𝑏 − 1))   by the definition of Fibonacci 

3.  = (𝐹(2)𝐹(𝑏) + 𝐹(1)𝐹(𝑏 − 1))   by substituting 𝐹(2) = 1 and 𝐹(1) = 1 

4.  = (𝐹(1 + 1)𝐹(𝑏) + 𝐹(1)𝐹(𝑏 − 1))   

5. Therefore 𝑃(1, 𝑏) is true. 
(b)  

1. (Basis step) 𝑃(0, 𝑏) and 𝑃(1, 𝑏) proved in part (a). 
2. (Inductive step)  

2.1. Let 𝑏 ∈ ℕ. Let 𝑘 ∈ ℤ+ such that 𝑃(𝑘 − 1, 𝑏) ∧ 𝑃(𝑘, 𝑏). 

2.2. 𝐹(𝑘 + 1 + 𝑏) = 𝐹(𝑘 + 𝑏 + 1)   by basic algebra 

2.3. = 𝐹(𝑘 + 𝑏) + 𝐹(𝑘 + 𝑏 − 1)   by the definition of 𝐹  

2.4.  = (𝐹(𝑘 + 1)𝐹(𝑏) + 𝐹(𝑘)𝐹(𝑏 − 1)) + 𝐹(𝑘 + 𝑏 − 1)  

   by hypothesis 𝑃(𝑘, 𝑏) 

2.5.  = (𝐹(𝑘 + 1)𝐹(𝑏) + 𝐹(𝑘)𝐹(𝑏 − 1)) + (𝐹(𝑘)𝐹(𝑏) + 𝐹(𝑘 − 1)𝐹(𝑏 − 1)) 

   by hypothesis 𝑃(𝑘 − 1, 𝑏) 

2.6.  = (𝐹(𝑘 + 1)𝐹(𝑏) + 𝐹(𝑘)𝐹(𝑏)) + (𝐹(𝑘)𝐹(𝑏 − 1) + 𝐹(𝑘 − 1)𝐹(𝑏 − 1))

  by basic algebra 

2.7.  = (𝐹(𝑘 + 1) + 𝐹(𝑘))𝐹(𝑏) + (𝐹(𝑘) + 𝐹(𝑘 − 1))𝐹(𝑏 − 1)  

   by distributive law x2 

2.8.  = 𝐹(𝑘 + 2)𝐹(𝑏) + 𝐹(𝑘 + 1)𝐹(𝑏 − 1)    by the definition of 𝐹 

2.9. Hence, 𝑃(𝑘 + 1, 𝑏) is true. by the definition of 𝑃 

3. Therefore, 𝑃(𝑛 − 1, 𝑏) ∧ 𝑃(𝑛, 𝑏) → 𝑃(𝑛 + 1, 𝑏) for all 𝑛 ∈ ℤ+. 
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9. The set 𝐻 of Hamming numbers is recursively defined as follows. 

(1) 1 ∈ 𝐻. (base clause) 

(2) If 𝑛 ∈ 𝐻, then 2𝑛 ∈ 𝐻 and 3𝑛 ∈ 𝐻 and 5𝑛 ∈ 𝐻 (recursion clause) 

(3) Membership for 𝐻 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 A proof rule using regular induction for this set of Hamming numbers can be written as: 

  𝑃(1) 

  ∀𝑛 ∈ 𝐻 (𝑃(𝑛) ⇒ 𝑃(2𝑛) ∧ 𝑃(3𝑛) ∧ 𝑃(5𝑛)) 

  ∴  ∀𝑛 ∈ 𝐻 𝑃(𝑛) 

 Use this 1PI proof rule/axiom, to show that Hamming numbers have a canonical representation.  

 A set has a canonical representation if there is a unique way for representing each distinct 
member of the set. For example, the Hamming number built by the following three ways 

   2 × (3 × (3 × 1)) or 3 × (2 × (3 × 1)) or 3 × (3 × (2 × 1)) 

 are equivalent to each other. Fortunately, we can represent Hamming numbers from this 
equivalent class of numbers in a canonical/unique manner by writing 213250. 

 We can prove that a canonical representation exists for 𝐻 by proving the following property: 

   𝑃(𝑛) ≡ ∃~𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ 𝑛 = 2𝑖3𝑗5𝑘) 

 Use 1PI to prove that this canonical representation exists for 𝐻. 
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Answer: 
Structural induction over 𝐻. To prove that ∀𝑛 ∈ 𝐻 𝑃(𝑛) is true, where each 𝑃(𝑛) is as defined 
above: 

(basis step) show that 𝑃(1) is true; and  

(inductive step) show that 

 ∀𝑛 ∈ 𝐻 (𝑃(𝑛) ⇒ 𝑃(2𝑛) ∧ 𝑃(3𝑛) ∧ 𝑃(5𝑛)) 

 is true. 

 Proof: 

1. For each 𝑛 ∈ 𝐻, prove 𝑃(𝑛). 

2. (Basis step)  
2.1. 𝑃(1)  holds since 1 can be represented uniquely as 203050. That is 

  ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ (1 = 2𝑖3𝑗5𝑘) ∧ (𝑖 = 𝑗 = 𝑘 = 0)) 

2.2. So 𝑃(1) is true. (by definition of 𝑃) 

3. (Inductive step) 
3.1. Let 𝑛 ∈ 𝐻 such that 𝑃(𝑛) is true, i.e.,  

  ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ (𝑛 = 2𝑖3𝑗5𝑘)) 

3.2. We can prove 𝑃(2𝑛) 

3.2.1. ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ (𝑛 = 2𝑖3𝑗5𝑘
)) (from premise) 

3.2.2. ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ (2𝑛 = 2𝑖+13𝑗5𝑘)) (from basic algebra) 

3.2.3. ∃𝑖′ ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ (2𝑛 = 2𝑖′3𝑗5𝑘) ∧ (𝑖′ = 𝑖 + 1)) (adding ∃𝑖′, 𝑖′ =

𝑖 + 1 that is equivalent to 𝑡𝑟𝑢𝑒) 

3.2.4. ∃! 𝑖′ ∃! 𝑗 ∃! 𝑘 ((𝑖′, 𝑗, 𝑘 ≥ 0) ∧ (2𝑛 = 2𝑖′3𝑗5𝑘))  (unique 𝑖’ due to bijective +1, 

unique 𝑖) 
3.2.5. Thus 𝑃(2𝑛) is true (by definition of 𝑃) 

3.3. We can prove 𝑃(3𝑛) (WLOG similar to 3.2) 

3.4. We can prove 𝑃(5𝑛) (WLOG similar to 3.2 and 3.3) 

3.5. Hence 𝑃(2𝑛) 𝑎𝑛𝑑 𝑃(3𝑛) 𝑎𝑛𝑑 𝑃(5𝑛) are all true in all cases. 

4. It follows that ∀𝑛 ∈ 𝐻, 𝑃(𝑛) is true by structural induction over 𝐻. 
 

  



AY2024/25 Semester 1  - 10 of 11 - CS1231S Tutorial #7 Answers 

 
10. Define a set 𝑆 recursively as follows. 

(1) 2 ∈ 𝑆. (base clause) 

(2) If 𝑥 ∈ 𝑆, then 3𝑥 ∈ 𝑆 and 𝑥2 ∈ 𝑆. (recursion clause) 

(3) Membership for 𝑆 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 Which of the numbers 0, 6, 15, 16, 36 are in 𝑆? Which are not? 

Answer: 
Structural induction over 𝑆. To prove that ∀𝑛 ∈ 𝑆 𝑃(𝑛) is true, where each 𝑃(𝑛) is a 
proposition, it suffices to: 

(basis step) show that 𝑃(2) is true; and  

(inductive step) show that ∀𝑥 ∈ 𝑆 (𝑃(𝑥) ⇒ 𝑃(3𝑥) ∧ 𝑃(𝑥2)) is true. 

 We know 0 ∉ 𝑆 because all 𝑛 ∈ 𝑆 satisfy 𝑛 ≥ 2, as one can show by structural induction 
over 𝑆 as follows. 

1. For each 𝑛 ∈ 𝑆, let 𝑃(𝑛) ≡ 𝑛 ≥ 2. 
2. (Basis step) 𝑃(2) is true because 2 ≥ 2. 
3. (Inductive step) 
 3.1. Let 𝑥 ∈ 𝑆 such that 𝑃(𝑥) is true, i.e., that 𝑥 ≥ 2. 
 3.2. Then 3𝑥 ≥ 3 × 2 = 6 ≥ 2 and 𝑥2 ≥ 22 = 4 ≥ 2. 
 3.3. So 𝑃(3𝑥) and 𝑃(𝑥2) are both true. 
4. Hence ∀𝑛 ∈ 𝑆 𝑃(𝑛) is true by structural induction over 𝑆. 

   2 ∈ 𝑆 by the base clause. 
   ∴ 6 ∈ 𝑆 by the recursion clause with 𝑛 = 2 and the previous line. 
   ∴ 36 ∈ 𝑆 by the recursion clause with 𝑛 = 6 and the previous line. 

  2 ∈ 𝑆 by the base clause. 
   ∴ 4 ∈ 𝑆 by the recursion clause with 𝑛 = 2 and the previous line. 
   ∴ 16 ∈ 𝑆 by the recursion clause with 𝑛 = 4 and the previous line. 

 We know 15 ∉ 𝑆 because no 𝑛 ∈ 𝑆 is odd, as one can show by structural induction over 
𝑆. 

 
11. Let 𝐴 = {1,2,3,4,5} and 𝐵 = {1,3,5,7,9}. Define a set 𝑆 recursively as follows. 

(1) 𝐴, 𝐵 ∈ 𝑆. (base clause) 

(2) If 𝑋, 𝑌 ∈ 𝑆, then 𝑋 ∩ 𝑌 ∈ 𝑆 and 𝑋 ∪ 𝑌 ∈ 𝑆 and 𝑋 \ 𝑌 ∈ 𝑆 (recursion clause) 

(3) Membership for 𝑆 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 For each of the following sets, determine whether it is in 𝑆, and use one sentence to explain 
your answer. 

(a) 𝐶 = {2,4,7,9}. 

(b) 𝐷 = {2,3,4,5}. 

 



AY2024/25 Semester 1  - 11 of 11 - CS1231S Tutorial #7 Answers 

Answer: 
Structural induction over 𝑆. To prove that ∀𝑋 ∈ 𝑆 𝑃(𝑋) is true, where each 𝑃(𝑋) is a 
proposition, it suffices to: 

(basis step) show that 𝑃(𝐴) and 𝑃(𝐵) are true; and  

(inductive step) show that 

  ∀𝑋, 𝑌 ∈ 𝑆 (𝑃(𝑋) ∧ 𝑃(𝑌) ⇒ 𝑃(𝑋 ∩ 𝑌) ∧ 𝑃(𝑋 ∪ 𝑌) ∧ 𝑃(𝑋 \ 𝑌))  

 is true. 

(a) 𝐴 \ 𝐵 = {2,4} and 𝐵 \ 𝐴 = {7,9}. 
 𝐶 ∈ 𝑆 because 𝐶 = {2,4,7,9} = (𝐴 \ 𝐵) ∪ (𝐵 \ 𝐴). 

(b) 𝐷 ∉ 𝑆 because 1 ∉ 𝐷 and 3 ∈ 𝐷, but one can show by structural induction that 

  ∀𝑋 ∈ 𝑆 (1 ∈ 𝑋 ⇔ 3 ∈ 𝑋). 

 (Proof shown below.) 

1. For each 𝑋 ∈ 𝑆, let 𝑃(𝑋) ≡ 1 ∈ 𝑋 ⇔ 3 ∈ 𝑋. 
2. (Basis step)  

2.1. As 1,3 ∈ 𝐴 and 1,3 ∈ 𝐵, we know 1 ∈ 𝐴 ⇔ 3 ∈ 𝐴 and 1 ∈ 𝐵 ⇔ 3 ∈ 𝐵. 
2.2. So 𝑃(𝐴) an 𝑃(𝐵) are true. 

3. (Inductive step) 
3.1. Let 𝑋, 𝑌 ∈ 𝑆 such that 𝑃(𝑋) and 𝑃(𝑌) are true, i.e.,  

  1 ∈ 𝑋 ⇔ 3 ∈ 𝑋    and   1 ∈ 𝑌 ⇔ 3 ∈ 𝑌. 

3.2. Case 1: If 1,3 ∈ 𝑋 and 1,3 ∈ 𝑌, then 
3.2.1. 1,3 ∈ 𝑋 ∩ 𝑌 and 1,3 ∈ 𝑋 ∪ 𝑌 and 1,3 ∉ 𝑋 \ 𝑌; 
3.2.2. So 1 ∈ 𝑋 ∩ 𝑌 ⇔ 3 ∈ 𝑋 ∩ 𝑌 and 1 ∈ 𝑋 ∪ 𝑌 ⇔ 3 ∈ 𝑋 ∪ 𝑌 and 1 ∈ 𝑋 \ 𝑌 ⇔ 3 ∈

𝑋 \ 𝑌. 
3.2.3. Thus 𝑃(𝑋 ∩ 𝑌) and 𝑃(𝑋 ∪ 𝑌) and 𝑃(𝑋 \ 𝑌) are all true. 

3.3. Case 2: If 1,3 ∈ 𝑋 and 1,3 ∉ 𝑌, then 
3.3.1. 1,3 ∉ 𝑋 ∩ 𝑌 and 1,3 ∈ 𝑋 ∪ 𝑌 and 1,3 ∈ 𝑋 \ 𝑌; 
3.3.2. So 1 ∈ 𝑋 ∩ 𝑌 ⇔ 3 ∈ 𝑋 ∩ 𝑌  and 1 ∈ 𝑋 ∪ 𝑌 ⇔ 3 ∈ 𝑋 ∪ 𝑌 and 1 ∈ 𝑋 \ 𝑌 ⇔ 3 ∈

𝑋 \ 𝑌. 
3.3.3. Thus 𝑃(𝑋 ∩ 𝑌) and 𝑃(𝑋 ∪ 𝑌) and 𝑃(𝑋 \ 𝑌) are all true. 

3.4. Case 3: If 1,3 ∉ 𝑋 and 1,3 ∈ 𝑌, then 
3.4.1. 1,3 ∉ 𝑋 ∩ 𝑌 and 1,3 ∈ 𝑋 ∪ 𝑌 and 1,3 ∉ 𝑋 \ 𝑌; 
3.4.2. So 1 ∈ 𝑋 ∩ 𝑌 ⇔ 3 ∈ 𝑋 ∩ 𝑌 and 1 ∈ 𝑋 ∪ 𝑌 ⇔ 3 ∈ 𝑋 ∪ 𝑌 and 1 ∈ 𝑋 \ 𝑌 ⇔ 3 ∈

𝑋 \ 𝑌. 
3.4.3. Thus 𝑃(𝑋 ∩ 𝑌) and 𝑃(𝑋 ∪ 𝑌) and 𝑃(𝑋 \ 𝑌) are all true. 

3.5. Case 4: If 1,3 ∉ 𝑋 and 1,3 ∉ 𝑌, then 
3.5.1. 1,3 ∉ 𝑋 ∩ 𝑌 and 1,3 ∉ 𝑋 ∪ 𝑌 and 1,3 ∉ 𝑋 \ 𝑌; 
3.5.2. So 1 ∈ 𝑋 ∩ 𝑌 ⇔ 3 ∈ 𝑋 ∩ 𝑌 and 1 ∈ 𝑋 ∪ 𝑌 ⇔ 3 ∈ 𝑋 ∪ 𝑌 and 1 ∈ 𝑋 \ 𝑌 ⇔ 3 ∈

𝑋 \ 𝑌. 
3.5.3. Thus 𝑃(𝑋 ∩ 𝑌) and 𝑃(𝑋 ∪ 𝑌) and 𝑃(𝑋 \ 𝑌) are all true. 

3.6. Hence 𝑃(𝑋 ∩ 𝑌) and 𝑃(𝑋 ∪ 𝑌) and 𝑃(𝑋 \ 𝑌) are all true in all cases. 

4. It follows that ∀𝑋 ∈ 𝑆 𝑃(𝑋) is true by structural induction over 𝑆. 


