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CS1231S: Discrete Structures 

Tutorial #7: Mathematical Induction and Recursion 
(Week 9: 14 – 18 October 2024) 

 

 

I. Discussion Questions 

These are meant for you to discuss on Canvas. No answers will be provided. 

Definition:  
An integer 𝑑 is said to be a linear combination of integers 𝑎 and 𝑏, if and only if, 
there exist integers 𝑠 and 𝑡 such that 𝑎𝑠 + 𝑏𝑡 = 𝑑. 

 

D1. Prove the following proposition: 

∀𝑎, 𝑏, 𝑐 ∈ ℤ, if 𝑎 | 𝑏 and 𝑎 | 𝑐, then ∀𝑥, 𝑦 ∈ ℤ (𝑎 | 𝑏𝑥 + 𝑐𝑦). 

 The proposition states that if 𝑎 divides both 𝑏 and 𝑐, then 𝑎 divides their linear combination. 

 

 

D2. Aiken attempts to prove the following by Mathematical Induction: 

∀𝑛 ∈ ℕ (3 | (𝑛3 + 44𝑛)). 

 However, his proof below is incorrect. Point out the mistakes. 

Proof: 
1. Note that 13 + 44(1) = 45 which is divisible by 3. 
2. So the statement is true for 𝑛 = 1. 
3. Now suppose the statement is true for some natural number 𝑘. 
4. Then 𝑘3 + 44𝑘 is divisible by 3. 
5. Therefore (𝑘 + 1)3 + 44(𝑘 + 1) is divisible by 3. 
6. So by Mathematical Induction, the statement is true for all numbers. 

 
 
D3. Dueet attempts to prove the following by Mathematical Induction. 

Consider a group of 𝑛 people, each of whom shakes hands exactly 
once with everybody else in the group. No one shakes his/her own 
hand. Let 𝑆(𝑛) be the total number of handshakes in any group of 
𝑛 people. Prove that  

∀𝑛 ∈ ℤ+  (𝑆(𝑛) =
𝑛(𝑛 − 1)

2
). 

 However, her proof below is incorrect. Point out the mistake. 
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Proof: 

1. Let 𝑃(𝑛) ≡ (𝑆(𝑛) =
𝑛(𝑛−1)

2
), for any 𝑛 ∈ ℤ+. 

2. Basis step: 𝑛 = 1 
 2.1. 𝑆(1) = 0 because nobody shakes his/her own hand. 

 2.2. Also, 
1(1−1)

2
= 0 = 𝑆(1). 

 2.3. Thus 𝑃(1) is true. 

3. Inductive step: Assume 𝑃(𝑘), i.e. 𝑆(𝑘) =
𝑘(𝑘−1)

2
.  

 3.1. For any 𝑘 ∈ ℤ+, consider any group of 𝑘 people. 
 3.2. This group makes 𝑆(𝑘) handshakes, by the inductive hypothesis. 

3.3. Now consider one new person joining the group. Since all the original 𝑘 people have 
already shaken hands, they just need to shake the newcomer’s hand, giving 𝑘 
additional handshakes in total. 

3.4. Thus 𝑆(𝑘 + 1) = 𝑆(𝑘) + 𝑘 =
𝑘(𝑘−1)

2
+ 𝑘 =

(𝑘+1)𝑘

2
 by basic algebra. 

3.5. Hence 𝑃(𝑘 + 1) is true. 

4. Therefore 𝑃(𝑛) is true for any 𝑛 ∈ ℤ+, by mathematical induction. 

 

II. Tutorial Questions 

In writing Mathematical Induction proofs, please follow the format we use in class. 

1. Many common mistakes are spotted in Mathematical Induction proofs. For each of the 
following, point out the mistake. (If you follow the format we introduced in class, it will help 
you avoid making some of these mistakes.) 

 Consider this problem: Prove by mathematical induction that for all 𝑛 ∈ ℤ+, 

1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
 

 Define the statement 𝑃(𝑛) to be “1 + 2 + ⋯ 𝑛 = 𝑛(𝑛 + 1)/2”. 

(a) Inductive hypothesis: Assume that 𝑃(𝑘) is true. 

 Inductive step: ∑ 𝑖𝑘+1
𝑖=1 = (𝑘 + 1) + ∑ 𝑖𝑘

𝑖=1 = (𝑘 + 1) + 𝑃(𝑘) = ⋯ 

 
(b) Inductive step: 

1. 1 + 2 + ⋯ + 𝑘 + (𝑘 + 1) =
(𝑘+1)(𝑘+2)

2
 

2. Hence 
𝑘(𝑘+1)

2
+ (𝑘 + 1) =

(𝑘+1)(𝑘+2)

2
 (by the inductive hypothesis) 

3. Hence 
𝑘(𝑘+1)+2(𝑘+1)

2
=

(𝑘+1)(𝑘+2)

2
 (by basic algebra) 

4. Hence 
(𝑘+1)(𝑘+2)

2
=

(𝑘+1)(𝑘+2)

2
. 

5. Since (4) is a tautology, (1) must be true. 

 
(c) Inductive hypothesis: Assume that 𝑃(𝑘) is true for all 𝑘 ∈ ℤ+. 

  



AY2024/25 Semester 1  - 3 of 4 - CS1231S Tutorial #7 

2. Prove by induction that for all 𝑛 ∈ ℤ+, 

𝟏𝟐 + 𝟐𝟐 + ⋯ + 𝒏𝟐 =
𝟏

𝟔
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏). 

 

3. Let 𝑥 ∈ ℝ≥−1. Prove by induction that 𝟏 + 𝒏𝒙 ≤ (𝟏 + 𝒙)𝒏 for all 𝑛 ∈ ℤ+. 

 

4. Let 𝑎 be an odd integer. Prove by induction that 𝟐𝒏+𝟐 | (𝒂𝟐𝒏
− 𝟏) for all 𝑛 ∈ ℤ+. 

 Here you may use without proof the fact that the product of any two consecutive integers is 
even. (Prove that as your own exercise – it’s very simple.) 

 (Note that 𝑎𝑏𝑐
= 𝑎(𝑏𝑐) by convention.) 

 
5. Prove by induction that 

∀𝒏 ∈ ℤ≥𝟖 ∃𝒙, 𝒚 ∈ ℕ (𝒏 = 𝟑𝒙 + 𝟓𝒚). 

 (In other words, any integer-valued transaction of at least $8 can be carried out using only $3 
and $5 notes.) 

 
6. Prove by induction that every positive integer can be written as a sum of distinct non-negative 

integer powers of 2, i.e., 

∀𝒏 ∈ ℤ+ ∃𝒍 ∈ ℤ+ ∃𝒊𝟏, 𝒊𝟐, ⋯ , 𝒊𝒍 ∈ ℕ (𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒍  ∧ 𝒏 = 𝟐𝒊𝟏 + 𝟐𝒊𝟐 + ⋯ + 𝟐𝒊𝒍). 

 
7. Let 𝑎0, 𝑎1, 𝑎2 ⋯  be the sequence satisfying  

  𝑎0 = 0,     𝑎1 = 2,     𝑎2 = 7,     and     𝑎𝑛+3 = 𝑎𝑛+2 + 𝑎𝑛+1 + 𝑎𝑛 

 for all 𝑛 ∈ ℕ. Prove by induction that 𝒂𝒏 < 𝟑𝒏 for all 𝑛 ∈ ℕ. 

 
8. [Adapted from AY2023/24 Semester 1 exam] 

Consider the Fibonacci function:  

  𝐹(0)  = 0; 𝐹(1) = 1; 𝐹(𝑛 + 1) = 𝐹(𝑛) + 𝐹(𝑛 − 1), 𝑛 ≥ 1. 

 One interesting property of this function can be expressed as follows: 

    𝑃(𝑎, 𝑏) ≡ 𝐹(𝑎 + 𝑏) = (𝐹(𝑎 + 1) × 𝐹(𝑏) + 𝐹(𝑎) × 𝐹(𝑏 − 1)),  ∀𝑎 ≥ 0, 𝑏 ≥ 1. 

 In your proofs for the parts below, you may use “basic algebra” for 
identity/commutative/associative laws of addition and multiplication, but if the distributive law 
is used, you must state it explicitly. 

(a) There are a few induction schemes possible to solve part (b). For this question, use the 
following basis steps: 𝑃(0, 𝑏) and 𝑃(1, 𝑏),  for all 𝑏 ≥ 1. Prove these basis steps. 

(b) Let 𝑏 ∈ ℕ. Prove that 

  𝑃(𝑛 − 1, 𝑏) ∧ 𝑃(𝑛, 𝑏) → 𝑃(𝑛 + 1, 𝑏) for all 𝑛 ∈ ℤ+. 
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9. The set 𝐻 of Hamming numbers is recursively defined as follows. 

(1) 1 ∈ 𝐻. (base clause) 

(2) If 𝑛 ∈ 𝐻, then 2𝑛 ∈ 𝐻 and 3𝑛 ∈ 𝐻 and 5𝑛 ∈ 𝐻 (recursion clause) 

(3) Membership for 𝐻 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 A proof rule using regular induction for this set of Hamming numbers can be written as: 

  𝑃(1) 

  ∀𝑛 ∈ 𝐻 (𝑃(𝑛) ⇒ 𝑃(2𝑛) ∧ 𝑃(3𝑛) ∧ 𝑃(5𝑛)) 

  ∴  ∀𝑛 ∈ 𝐻 𝑃(𝑛) 

 Use this 1PI proof rule/axiom, to show that Hamming numbers have a canonical representation.  

 A set has a canonical representation if there is a unique way for representing each distinct 
member of the set. For example, the Hamming number built by the following three ways 

   2 × (3 × (3 × 1)) or 3 × (2 × (3 × 1)) or 3 × (3 × (2 × 1)) 

 are equivalent to each other. Fortunately, we can represent Hamming numbers from this 
equivalent class of numbers in a canonical/unique manner by writing 213250. 

 We can prove that a canonical representation exists for 𝐻 by proving the following property: 

   𝑃(𝑛) ≡ ∃! 𝑖 ∃! 𝑗 ∃! 𝑘 ((𝑖, 𝑗, 𝑘 ≥ 0) ∧ 𝑛 = 2𝑖3𝑗5𝑘) 

 Use 1PI to prove that this canonical representation exists for 𝐻. 

 

10. Define a set 𝑆 recursively as follows. 

(1) 2 ∈ 𝑆. (base clause) 

(2) If 𝑥 ∈ 𝑆, then 3𝑥 ∈ 𝑆 and 𝑥2 ∈ 𝑆. (recursion clause) 

(3) Membership for 𝑆 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 Which of the numbers 0, 6, 15, 16, 36 are in 𝑆? Which are not? 

 
11. Let 𝐴 = {1,2,3,4,5} and 𝐵 = {1,3,5,7,9}. Define a set 𝑆 recursively as follows. 

(1) 𝐴, 𝐵 ∈ 𝑆. (base clause) 

(2) If 𝑋, 𝑌 ∈ 𝑆, then 𝑋 ∩ 𝑌 ∈ 𝑆 and 𝑋 ∪ 𝑌 ∈ 𝑆 and 𝑋 \ 𝑌 ∈ 𝑆 (recursion clause) 

(3) Membership for 𝑆 can always be demonstrated by (finitely many) successive 
applications of clauses above. (minimality clause) 

 For each of the following sets, determine whether it is in 𝑆, and use one sentence to explain 
your answer. 

(a) 𝐶 = {2,4,7,9}. 

(b) 𝐷 = {2,3,4,5}. 

 


