CS1231S: Discrete Structures Tutorial #8: Cardinality and Revision

(Week 10: 21 – 25 October 2024)

Answers

1. In lecture example #3, we showed that \mathbb{Z} is countable by defining a bijection $f: \mathbb{Z}^+ \to \mathbb{Z}$ as follows:

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even;} \\ -\frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$$

The above is based on the definition $\aleph_0 = |\mathbb{Z}^+|$. Suppose we adopt the definition $\aleph_0 = |\mathbb{N}|$ instead, define a bijection $g: \mathbb{N} \to \mathbb{Z}$ using a single-line formula to show that \mathbb{Z} is countable.

Answer:

One such bijection (there could be others) $g: \mathbb{N} \to \mathbb{Z}$ is:

$$g(n) = (-1)^n \left\lfloor \frac{n+1}{2} \right\rfloor$$

Proof:

Note that (-1) to an even power is 1, and (-1) to an odd power is -1.

1. (Injectivity)

- 1.1. Let $g(a), g(b) \in \mathbb{Z}$ and g(a) = g(b).
- 1.2. Then g(a) and g(b) must both be non-negative or both negative.
- 1.3. Case 1: g(a) and g(b) are both non-negative.

1.3.2. Then
$$(-1)^a \left\lfloor \frac{a+1}{2} \right\rfloor = (-1)^b \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \left\lfloor \frac{a+1}{2} \right\rfloor = \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \frac{a}{2} = \frac{b}{2} \Rightarrow a = b.$$

- 1.4. Case 2: g(a) and g(b) are both negative. 1.4.1. Then a and b must be odd. 1.4.2. Then $(-1)^a \left\lfloor \frac{a+1}{2} \right\rfloor = (-1)^b \left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow -\left\lfloor \frac{a+1}{2} \right\rfloor = -\left\lfloor \frac{b+1}{2} \right\rfloor \Rightarrow \frac{a+1}{2} = \frac{b+1}{2} \Rightarrow a = b$.
- 1.5. In all cases, a = b.
- 1.6. Therefore g is injective.

2. (Surjectivity)

- 2.1. Let $m \in \mathbb{Z}$. Then *m* is non-negative or negative.
- 2.2. Case 1: *m* is non-negative. 2.2.1. Let n = 2m.

2.2.2. Then
$$n \in \mathbb{N}$$
 and $g(n) = (-1)^{2m} \left[\frac{2m+1}{2} \right] = \frac{2m}{2} = m.$

2.3. Case 1: *m* is negative.
2.3.1. Let *n* = −2*m* − 1.

2.3.2. Then $n \in \mathbb{N}$ and $g(n) = (-1)^{-2m-1} \left\lfloor \frac{(-2m-1)+1}{2} \right\rfloor = -\frac{-2m}{2} = m.$

- 2.4. In all cases, there exists $n \in \mathbb{N}$ such that g(n) = m.
- 2.5. Therefore g is surjective.
- 3. Therefore g is a bijection from \mathbb{N} to \mathbb{Z} .

- 2. Let *B* be a countably infinite set and *C* a finite set. Show that $B \cup C$ is countable
 - (a) by using the sequence argument;
 - (b) by defining a bijection $g: \mathbb{N} \to B \cup C$.

Lemma 9.2

An infinite set *B* is countable if and only if there is a sequence b_0, b_1, b_2, \cdots in which every element of *B* appears.

Answers:

- (a) 1. Apply Lemma 9.2 to obtain a sequence b_0, b_1, b_2, \cdots in which every element of *B* appears.
 - 2. Suppose $|C| = n \in \mathbb{N}$. We may write $C = \{c_0, c_1, c_2, \dots, c_{n-1}\}$.
 - 3. Then $c_0, c_1, c_2, \dots, c_{n-1}, b_0, b_1, b_2, \dots$ is a sequence in which every element of $B \cup C$ appears.
 - 4. So $B \cup C$ is countable by Lemma 9.2.
- (b) 1. As *B* is a countably infinite set, we have a bijection $f: \mathbb{N} \to B$.
 - 2. Let $C' = C \setminus B = \{c_0, c_1, c_2, \dots, c_{k-1}\}$ where $c_0, c_1, c_2, \dots, c_{k-1}$ are all distinct.
 - 3. Define a function $g: \mathbb{N} \to B \cup C$ such that

$$g(x) = \begin{cases} c_x & \text{if } x < k; \\ f(x-k) & \text{otherwise} \end{cases}$$

- 4. (Injectivity)
 - 4.1. Let x_1 , $x_2 \in \mathbb{N}$ such that $g(x_1) = g(x_2)$.
 - 4.2. Case 1: x_1 , $x_2 \ge k$.
 - 4.2.1. $f(x_1 k) = g(x_1) = g(x_2) = f(x_2 k)$.
 - 4.2.2. $x_1 k = x_2 k$ (by injectivity of *f*) and so $x_1 = x_2$.
 - 4.3. Case 2: x_1 , $x_2 < k$.
 - 4.3.1. $c_{x_1} = g(x_1) = g(x_2) = c_{x_2}$.
 - 4.3.2. $x_1 = x_2$ (since $c_0, c_1, ..., c_{k-1}$ are all distinct).
 - 4.4. Case 3: exactly one of x_1 , x_2 is less than k.
 - 4.4.1. WLOG, assume $x_1 < k \le x_2$.
 - 4.4.2. $g(x_1) = c_{x_1} \in C' = C \setminus B$. In particular, $g(x_1) \notin B$ (by def of set difference).
 - 4.4.3. $g(x_1) = g(x_2) = f(x_2 k) \in B$.
 - 4.4.4. Contradiction, hence this case will never happen.
 - 4.5. In all possible cases, we have $x_1 = x_2$.
 - 4.6. Therefore g is injective.

5. (Surjectivity)

- 5.1. Let $y \in B \cup C$.
- 5.2. Case 1: *y* ∈ *B*.

5.2.1. There exists some $z \in \mathbb{N}$ such that y = f(z) (by surjectivity of f).

5.2.2. Let $x = z + k \in \mathbb{N}$.

5.2.3. Then, $x \ge k$ and so g(x) = g(z + k) = f(z) = y (by definition of g).

- 5.3. Case 2: *y* ∉ *B*.
 - 5.3.1. Then, $y \in C \setminus B = C'$.
 - 5.3.2. There exists some $x \in \mathbb{N}$ with x < k such that $y = c_x$ (by definition of c_0, c_1, \dots, c_{k-1}).
 - 5.3.3. Then, $g(x) = c_x = y$ (by definition of g).
- 5.4. In all cases, there exists some $x \in \mathbb{N}$ such that g(x) = y.
- 5.5. Therefore g is surjective.
- 6. Therefore g is a bijection from \mathbb{N} to $B \cup C$.

Note: You can see that the sequence argument "shields off" a lot of details.

- 3. Recall the definition of $\bigcup_{i=m}^{n} A_i$ in Tutorial 3.
 - (a) Consider this claim:

"Suppose A_1, A_2, \dots are finite sets. Then $\bigcup_{i=1}^n A_i$ is finite for any $n \ge 2$."

The above statement is true. However, consider the following "proof":

"We will prove by induction on n. Since A_1 and A_2 are finite, then $A_1 \cup A_2$ is finite, so the claim is true for n = 2. Now suppose the claim is true for n = k, so $\bigcup_{i=1}^{k} A_i$ is finite. Let $A_{k+1} = \emptyset$. Then $\bigcup_{i=1}^{k+1} A_i = (\bigcup_{i=1}^{k} A_i) \cup A_{k+1} = \bigcup_{i=1}^{k} A_i$ which is finite by the induction hypothesis, so the claim is true for n = k + 1. Therefore, the claim is true for all $n \ge 2$."

What is wrong with this "proof"?

(b) Disprove the following: "Suppose A_1, A_2, \dots are finite sets. Then $\bigcup_{k=1}^{\infty} A_k$ is finite." [The point here is: induction takes you to any finite n, but <u>not</u> to infinity.]

Answers:

- (a) There is an implicit universal quantification on A_1, A_2, \dots , i.e. we have to prove the claim is true for all possible A_1, A_2, \dots , so we cannot just consider the special case $A_{k+1} = \emptyset$.
- (b) Let $A_i = \{i\}$ for all $i \ge 1$. Then $\bigcup_{i=1}^{\infty} A_i = \mathbb{Z}^+$, which is infinite.
- 4. Suppose A_1, A_2, A_3, \cdots are countable sets.
 - (a) Prove, by induction, that $\bigcup_{i=1}^{n} A_i$ is countable for any $n \in \mathbb{Z}^+$.
 - (b) Does (a) prove that $\bigcup_{i=1}^{\infty} A_i$ is countable?

Answers:

(a) $\bigcup_{i=1}^{n} A_i$ is countable.

Proof:

Lemma 9.4 Let *A* and *B* be countably infinite sets. Then $A \cup B$ is countable.

- 1. Let P(n) means " $\bigcup_{i=1}^{n} A_i$ is countable".
- 2. **Basis step:** $\bigcup_{i=1}^{1} A_i = A_1$ is countable, so P(1) is true.
- 3. **Inductive step:** Suppose P(k) is true.
 - 3.1. $\bigcup_{i=1}^{k+1} A_i = (\bigcup_{i=1}^k A_i) \cup A_{k+1}.$
 - 3.3. Case 1: Both $\bigcup_{i=1}^{k} A_i$ and A_{k+1} are finite.
 - 3.3.1 Then, $(\bigcup_{i=1}^{k} A_i) \cup A_{k+1}$ is finite, and hence countable.
 - 3.4. Case 2: Exactly one of $\bigcup_{i=1}^{k} A_i$ and A_{k+1} is finite.

3.4.1 Then, $\left(\bigcup_{i=1}^{k} A_{i}\right) \cup A_{k+1}$ is countable (by Q2).

- 3.5. Case 3: Neither $\bigcup_{i=1}^{k} A_i$ nor A_{k+1} is finite.
 - 3.5.1 Then, $\left(\bigcup_{i=1}^{k} A_{i}\right) \cup A_{k+1}$ is countable (by Lemma 9.4).
- 3.6. Hence P(k + 1) is true.
- 4. Therefore $\bigcup_{i=1}^{n} A_i$ is countable for any $n \in \mathbb{Z}^+$ by MI.
- (b) No. Question 3(b) shows that a proof that $\bigcup_{i=1}^{n} A_i$ is finite for every $n \ge 2$ does not imply $\bigcup_{i=1}^{\infty} A_i$ is finite. Similarly here, a proof that $\bigcup_{i=1}^{n} A_i$ is countable for every $n \ge 1$ does not imply that $\bigcup_{i=1}^{\infty} A_i$ is countable.

Note that $\bigcup_{i=1}^{\infty} A_i$ is indeed countable, just that it cannot be proved using the approach in part (a). We will prove it in the next question.

5. Let S_i be a countably infinite set for each $i \in \mathbb{Z}^+$. Prove that $\bigcup_{i \in \mathbb{Z}^+} S_i$ is countable. [Hint: Use this theorem covered in class: $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.]

Answer:

1. Note that $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

2. Hence there is a bijection $f: \mathbb{Z}^+ \to \mathbb{Z}^+ \times \mathbb{Z}^+$. appears.

Lemma 9.2

An infinite set *B* is countable if and only if there is a sequence b_0, b_1, b_2, \cdots in which every element of *B* appears.

- 3. For each $i \in \mathbb{Z}^+$, since S_i is countable, apply Lemma 9.2 to find a sequence $b_{i,1}, b_{i,2}, b_{i,3}, \cdots$ in which every element of S_i appears.
- 4. Define a sequence c_1, c_2, c_3, \cdots by setting each $c_k = b_{i,j}$, where (i, j) = f(k).
- 5. In view of Lemma 9.2, it suffices to show that every element of $\bigcup_{i \in \mathbb{Z}^+} S_i$ appears in the sequence c_1, c_2, c_3, \cdots .
 - 5.1. Take $x \in \bigcup_{i \in \mathbb{Z}^+} S_i$.
 - 5.2. The definition of $\bigcup_{i \in \mathbb{Z}^+} S_i$ gives $i \in \mathbb{Z}^+$ such that $x \in S_i$.
 - 5.3. So line 3 tell us that x appears in the sequence $b_{i,1}, b_{i,2}, b_{i,3}, \cdots$.
 - 5.4. Let $j \in \mathbb{Z}^+$ such that $x = b_{i,j}$.
 - 5.5. From the surjectivity of f, we obtain $k \in \mathbb{Z}^+$ such that f(k) = (i, j).
 - 5.6. Then $x = b_{i,j} = c_k$ by the definition of c_k .

6. Let *X* be a (not necessarily countable) infinite set and *Y* be a finite set.

Define a bijection $X \cup Y \rightarrow X$.

Answer:

Proposition 9.3
Every infinite set has a countably infinite subset.

- 1. Use Proposition 9.3 to find a countably infinite subset $X_0 \subseteq X$.
- 2. Let $Y_0 = Y \setminus X$, so that Y_0 is finite.
- 3. Then $X_0 \cup Y_0$ is countable by question 2.
- 4. Hence $|X_0 \cup Y_0| = |\mathbb{Z}^+| = |X_0|$ by the definition of countably infinite sets.
- 5. Hence there is a bijection $f: X_0 \cup Y_0 \rightarrow X_0$.
- 6. Define $g: X \cup Y \to X$ as follows: for each $z \in X \cup Y$,

$$g(z) = \begin{cases} f(z), & \text{if } z \in X_0 \cup Y_0; \\ z, & \text{otherwise.} \end{cases}$$

7. *g* is the required bijection.

7. Let *A* be a countably infinite set. Prove that $\mathcal{P}(A)$ is uncountable. ($\mathcal{P}(A)$ is the power set of *A*.) *Answer:*

Sketch: We prove by contradiction. Assuming that $\mathcal{P}(A)$ is countable, we provide a sequence of elements of $\mathcal{P}(A)$. Then we produce an element of $\mathcal{P}(A)$ that does not appear in the sequence that claims to contain all elements of $\mathscr{P}(A)$.

- 1. Suppose not, that is, $\mathcal{P}(A)$ is countable.
- 2. $\mathcal{P}(A)$ is infinite as A is infinite and $\{a\} \in \mathcal{P}(A)$ for every $a \in A$.
- 3. By Proposition 9.1, there is a sequence $a_0, a_1, a_2, \dots \in A$ in which every element of A appears exactly once.
- 4. By Proposition 9.1, there is a sequence $B_0, B_1, B_2, \dots \in \mathcal{P}(A)$ in which every element of $\mathcal{P}(A)$ appears exactly once.
- 5. Now, define $B = \{a_i : a_i \notin B_i\}$.
- 6. Note that $B \in \mathcal{P}(A)$ since $a_0, a_1, a_2, \dots \in A$.
- 7. To show $B \neq B_i$ for all $i \in \mathbb{N}$.
 - 7.1. Let $i \in \mathbb{N}$.
 - 7.2. Case 1: If $a_i \notin B_i$, then $a_i \in B$ by the definition of B.
 - 7.3. Case 2: If $a_i \in B_i$, then $a_i \notin B$ by the definition of B (as every element a_i of A appears exactly once in the sequence a_0, a_1, a_2, \dots , so no $a_i = a_j$ if $i \neq j$.)
 - 7.4. In all cases, $B \neq B_i$.
- 8. Since *B* is not in the sequence $B_0, B_1, B_2, \dots \in \mathcal{P}(A)$, this contradicts the claim that $\mathcal{P}(A)$ is countable.
- 9. Therefore, $\mathcal{P}(A)$ is uncountable.

Proposition 9.1

An infinite set *B* is countable if and only if there is a sequence $b_0, b_1, b_2, \dots \in B$ in which every element of *B* appears exactly once.

8. [AY2022/23 Semester 1 Exam]

Given the following statements on any finite set A,

- (i) If *R* is a reflexive relation on *A*, then $|A| \leq |R|$.
- (ii) If *R* is a symmetric relation on *A*, then $|A| \leq |R|$.
- (iii) If *R* is a transitive relation on *A*, then $|A| \leq |R|$.

Prove or disprove each of the statements.

Answers:

- (i) True.
 - 1. Let *A* be a finite set and *R* a reflexive relation on *A*.
 - 2. Define a function $f: A \to R$ by setting, for $x \in A$, f(x) = (x, x).
 - 3. (*F*1) 3.1. Let $x \in A$.
 - 3.2. x R x (by the definition of reflexivity).
 - 3.3. Hence, we have $(x, (x, x)) \in f$ (by the definition of f).
 - 4. (F2) 4.1. Let $x \in A$ and $y_1, y_2 \in R$ such that $(x, y_1) \in f$ and $(x, y_2) \in f$.
 - 4.2. Then $y_1 = (x, x) = y_2$ (by the definition of f).
 - 5. From lines 3 and 4, *f* is well defined.
 - 6. (*f* is injective)
 - 6.1. Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$.
 - 6.2. Then $(x_1, x_1) = (x_2, x_2)$ (by the definition of *f*).
 - 6.3. Hence $x_1 = x_2$ (by equality of ordered pairs).
 - 6.4. Therefore f is injective.
 - 7. Since $f: A \to R$ is an injective function, $|A| \le |R|$ (by the Pigeonhole Principle).
- (ii) and (iii): False

Let *R* be an empty relation on a non-empty set *A*.

Then *R* is vacuously symmetric and transitive, but $|A| > 0 = |\emptyset|$.

Function. A function $f: X \to Y$ is a relation satisfying: (F1) $\forall x \in X \exists y \in Y (x, y) \in f$.

(F2) $\forall x \in X \forall y_1, y_2 \in Y \left(\left((x, y_1) \in f \land (x, y_2) \in f \right) \rightarrow y_1 = y_2 \right)$

Injection. A function $f: X \to Y$ is injective iff $\forall x_1, x_2 \in X$ ($f(x_1) = f(x_2) \Rightarrow x_1 = x_2$).

Pigeonhole Principle (Lecture 9 slide 6)

Let A and B be finite sets. If there is an injection $f: A \rightarrow B$, then $|A| \leq |B|$.

9. [AY2022/23 Semester 2 Exam]

The Fibonacci sequence F_n is defined for $n \in \mathbb{N}$ as follows:

 $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for n > 1.

Prove by Mathematical Induction the following statement:

$$Even(F_n) \Leftrightarrow Even(F_{n+3}), \forall n \in \mathbb{N}.$$

The predicate Even(x) is true when the integer x is even and false otherwise. You may use the following fact in your proof:

Fact 1:
$$Even(x + y) \Leftrightarrow (Even(x) \Leftrightarrow Even(y))$$

Answer: Proof by Strong Induction

- 1. For each $n \in \mathbb{N}$, let $P(n) \equiv (Even(F_n) \Leftrightarrow Even(F_{n+3}))$.
- 2. (Basis step)
 - 2.1. $F_2 = F_1 + F_0 = 1 + 0 = 1$; $F_3 = F_2 + F_1 = 1 + 1 = 2$; $F_4 = F_3 + F_2 = 2 + 1 = 3$ (by definition of Fibonacci sequence)
 - 2.2. $P(0) \equiv (Even(F_0) \Leftrightarrow Even(F_3)) \equiv (Even(0) \Leftrightarrow Even(2))$ is true.
 - 2.3. $P(1) \equiv (Even(F_1) \Leftrightarrow Even(F_4)) \equiv (Even(1) \Leftrightarrow Even(3))$ is true.
- 3. (Inductive step)

3.1. Inductive hypothesis: Let $k \in \mathbb{N}$ such that $P(0) \land P(1) \land ... \land P(k)$ is true.

3.2. Case 1: k = 0.

 $3.2.1.P(1) \equiv (Even(F_1) \Leftrightarrow Even(F_4)) \equiv (Even(1) \Leftrightarrow Even(3))$ is true (by step 2.1).

3.3. Case 2: $k \ge 1$.

$3.3.1.Even(F_{k+1}) \Leftrightarrow Even(F_k + F_{k-1})$		(by definition of Fibonacci sequence)
3.3.2.	$\Leftrightarrow \left(Even(F_k) \Leftrightarrow Even(F_{k-1}) \right)$	(by Fact 1)
3.3.3.	$\Leftrightarrow \left(Even(F_{k+3}) \Leftrightarrow Even(F_{k+2}) \right)$	(by IH: $P(k)$ and $P(k - 1)$ are true)
3.3.4.	$\Leftrightarrow Even(F_{k+3}+F_{k+2})$	(by Fact 1)
3.3.5.	$\Leftrightarrow Even(F_{k+4})$	(by definition of Fibonacci sequence)

3.4. Thus P(k + 1) is true.

4. Therefore, $\forall n \in \mathbb{N} P(n)$ is true by Strong Mathematical Induction.

- 10. [AY2022/23 Semester 2 Exam]
 - (a) Let \sim be an equivalence relation on X and let $g : X \rightarrow Y$ be a function such that

$$g(a) = g(b) \Leftrightarrow a \sim b \quad \forall a, b \in X.$$

Prove or disprove the following statement:

The following function f is well-defined:

 $f: X/\sim \rightarrow Y$ given by the formula $f([x]) = g(x) \ \forall x \in X$.

(b) If the function f in part (a) above is well-defined, prove or disprove whether function f is injective or not injective.

If the function f in part (a) above is not well-defined, would changing the function g in part (a) to

$$g(a) = g(b) \Leftrightarrow a \nleftrightarrow b \quad \forall a, b \in X.$$
 (Note: \nleftrightarrow is the negation of \sim .)

make the function f in part (a) well-defined? Prove or disprove.

(c) Given the following bijections f and g on the set $A = \{1, 2, 3, 4\}$,

$$f = \{(1,2), (2,4), (3,1), (4,3)\};$$

$$g = \{(1,4), (2,1), (3,2), (4,3)\}.$$

Find the order of f, g and $(f^{-1} \circ g)$.

Answers:

(a)

1. Given $f([x]) = g(x) \forall x \in X$.

Lemma Rel.1 Equivalence Classes Let ~ be an equivalence relation on a set *A*. The following are equivalent for all $x, y \in A$. (i) $x \sim y$; (ii) [x] = [y]; (iii) $[x] \cap [y] \neq \emptyset$.

- 2. Let $[x] \in X/\sim$ be an arbitrary equivalence class of \sim for some $x \in X$.
- 3. Since g is a function, this shows the existence of an image of [x] (i.e. g(x)) under f.
- 4. (Next, to show that the image of [x] under f is unique) Suppose f([x]) = g(x) and f([x']) = g(x') are such that [x] = [x'].
- 5. Since [x] = [x'], we have $x \sim x'$ (by Lemma Rel.1 Equivalence Classes)
- 6. Hence g(x) = g(x') (by definition of g)
- 7. Hence the image of [x] is unique.
- 8. Since the image of [x] exists and is unique for every $[x] \in X/\sim$, the function f is well-defined.

(b)

- 1. Suppose f([x]) = f([x']).
- 2. Then g(x) = g(x') (by definition of f)
- 3. Then $x \sim x'$ (by definition of g)
- 4. Then [x] = [x'] (by Lemma Rel.1 Equivalence Classes)
- 5. Hence f is injective (by definition of injection)

Injection. A function $f: X \to Y$ is injective iff $\forall x_1, x_2 \in X \ (f(x_1) = f(x_2) \Rightarrow x_1 = x_2).$

(c)

Order of f = 4; order of g = 4; order of $(f^{-1} \circ g) = 3$.

The **order** of a a bijection $f: A \to A$ is the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n-\text{many } f's} = id_A.$$