## CS2100 Assignment #2 AY2024/25 Semester 1 Deadline: Monday, 14 October 2024, 1:00pm TEMPLATE FOR SUBMISSION (ANSWERS)

| Full name:                     |               |    | Tutorial grp: <b>T</b> |
|--------------------------------|---------------|----|------------------------|
| <b>Q1.</b> (Total: 15 marks)   |               |    |                        |
| Cycle time: 18                 | ps            |    | [4 marks]              |
| Clock frequency: 55            | GHz           |    | [3 marks]              |
| Time taken for beq instruction | on: <b>11</b> | ps | [3 marks]              |
| Optimization: new              | ALU           |    | [5 marks]              |

Explain your answers below.

Cycle time is based on the slowest instruction. That is sw and lw in this case. sw → Fetch (5 ps) + RegFile (2 ps) + ALU (4 ps) + MemWrite (7 ps) = 18 ps lw → Fetch (5 ps) + RegFile (2 ps) + ALU (4 ps) + MemRead (5 ps) + RegFile (2 ps) = 18 ps Clock frequency = (1/18) \* 10 <sup>12</sup> Hz = **55 GHz** beq → Fetch (5 ps) + RegFile (2 ps) + ALU (4 ps) = **11 ps** For optimisation, we only look at the slowest instructions. For lw, RegFile reduces by 2 ps and ALU by 2 ps, so max reduction is 2 ps using either. For sw, RegFile reduces by 1 (no write back) and ALU by 2 ps, so max reduction is 2 ps using ALU. Hence, going with a new ALU is overall better. Easiest would be to take a line from the PC value and then send it to MemToReg, but this would need changes to MemToReg to take a 3<sup>rd</sup> input line. This would mean that we would have the following control signals:

RegDst = 0 RegWrite = 1 ALUSrc = X PCSrc = 0 ALUop = X MemRead and MemWrite are both 0 **MemToReg = 2** 

Q3. (Total: 3 marks)

| (a) | M31 = <b>A</b>          | +B'+C'+D'+E'+F                                                                                              | ''                                                                               | [1 mark]                                                           |
|-----|-------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|
| (b) | $m29 \cdot M31 =$       | $A' \cdot B \cdot C \cdot D \cdot E' \cdot$                                                                 | F                                                                                | [2 marks]                                                          |
| Q4. | . (Total: 4 marks)      | Note that given a minterm $m$ :<br>where $x, y \in \{0, 1, 2, 3, 4, 5, \dots, 2\}$<br>Exercise: prove this. | x and a maxterm $My$ on a functi $^{n} - 1$ }, if $x = y$ , then $mx \cdot My =$ | on with the same $n$ variables,<br>0, otherwise $mx \cdot My = mx$ |
| (a) | $F\cdot G'=\sum m($     | 7, 13, 15                                                                                                   | )                                                                                | [2 marks]                                                          |
| (b) | $G' \oplus H = \sum m($ | 1, 5, 8, 12                                                                                                 | )                                                                                | [2 marks]                                                          |

Q5. (Total: 3 marks)

Draw your circuit below.



Q6. (Total: 7 marks)



Q7. (Total:3 marks)

| 1 | _ | ١ |
|---|---|---|
| ( | а | 1 |
| ۱ | - | , |

| Α | В | С | D | IsZero |
|---|---|---|---|--------|
| 0 | 0 | 0 | 0 | 1      |
| 0 | 0 | 0 | 1 | 0      |
| 0 | 0 | 1 | 0 | X      |
| 0 | 0 | 1 | 1 | 0      |
| 0 | 1 | 0 | 0 | 0      |
| 0 | 1 | 0 | 1 | 1      |
| 0 | 1 | 1 | 0 | X      |
| 0 | 1 | 1 | 1 | 0      |
| 1 | 0 | 0 | 0 | X      |
| 1 | 0 | 0 | 1 | X      |
| 1 | 0 | 1 | 0 | X      |
| 1 | 0 | 1 | 1 | X      |
| 1 | 1 | 0 | 0 | 0      |
| 1 | 1 | 0 | 1 | 0      |
| 1 | 1 | 1 | 0 | X      |
| 1 | 1 | 1 | 1 | 1      |

(b) Simplified SOP expression

IsZero =

 $A \cdot C + B' \cdot D' + A' \cdot B \cdot C' \cdot D$ 

[1 mark]

[2 marks]

## Workings

Write your workings here. They will not be graded, but the grader might look at it to figure out where you went wrong.

## Workings for Q3

(b)  

$$m29 \cdot M31 = M31 \cdot m29 \text{ (commutative law)}$$

$$= (A + B' + C' + D' + E' + F') \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F)$$

$$= A \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) + B' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F)$$

$$+C' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) + D' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F)$$

$$+E' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) + F' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) \text{ (distributive law)}$$

$$= 0 + 0 + 0 + 0 \text{ (complement law } X \cdot X' = 0)$$

$$+E' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) + F' \cdot (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) \text{ (}$$

$$= (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) + (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) \text{ (idempotent)}$$

$$= (A' \cdot B \cdot C \cdot D \cdot E' \cdot F) \text{ (idempotent)}$$

## K-map for Q6



Working: SOP expression for Z' is  $B \cdot C' + A \cdot B' \cdot D'$  (see K-map of Z' above.)

$$Z' = B \cdot C' + A \cdot B' \cdot D'$$
  

$$Z = (B \cdot C' + A \cdot B' \cdot D')' = (B \cdot C')' \cdot (A \cdot B' \cdot D')' = (B' + C) \cdot (A' + B + D).$$