
AY2024/25 Semester 2 Week 7 - 1 of 5 - CS2100 Lab #4

CS2100: Computer Organisation

Lab #4: Writing MIPS code using QtSpim

Name: Student No.:

Lab Group:

Objective

In this lab, you will use the QtSpim to understand how typical programs are written. This

document and its associated files (messages.asm and arrayCount.asm) can be

downloaded from Canvas or the CS2100 course website.

Reading and Writing Message to Console Window: messages.asm

Recall that in Lab #3 sample2.asm, you made use of the system call (syscall) to print

some text. QtSpim provides a small set of operating-system-like services through the system

call (syscall) instructions (see Appendix A, pages A-43 to A-45).

To request a service, a program loads the system call code into register $v0 and arguments

into registers $a0 – $a2 (see Figure A.9.1 below). System calls that return values put their

results in register $v0. For this lab, we are interested in only the following system calls:

print_int (code 1), print_string (code 4), read_int (code 5) and exit (code 10).

Remember to
bring this along
to your lab!

AY2024/25 Semester 2 Week 7 - 2 of 5 - CS2100 Lab #4

messages.asm

.data

str: .asciiz "the answer = "

.text

main:

syscall # print the integer

li $v0, 10

syscall

system call code for exit

terminate program

For example, the following code in messages.asm prints “the answer = 5”.

li

la

$v0,

$a0,

4

str

system call code for

address of string to

print_string

print

syscall # print the string

li $v0, 1 # system call code for print_int

li $a0, 5 # integer to print

The print_string system call (system call code 4) is passed a pointer (memory address) to

a null-terminated string via register $a0 which it prints on the console. The print_int

system call (system call code 1) is passed an integer via register $a0 which it prints on the

console. The exit system call (system call code 10) terminates the program.

The li (load immediate) and la (load address) are pseudo-instructions (refer to Lab #3).

Run the above program to verify your understanding.

Task 1: Modify messages.asm [2 marks]

Modify messages.asm and call the new program task1.asm. The modified program

should read the value to be printed from the console before printing the value. Recall that a

string is simply an array of character. So we pass the address of the first element of the null-

terminated string. The system call read_int reads an entire line of input up to and including

the newline. Characters following the number are ignored. Note that read_int modifies the

register $v0 (where you put the code for system call) as it returns the integer value in register

$v0.

The following screen capture shows a run of the program. The first line is your input, and the

second line is the output of your program.

Demonstrate your new program task1.asm to your lab TA.

AY2024/25 Semester 2 Week 7 - 3 of 5 - CS2100 Lab #4

Key idea: Values of program variables are stored in the memory. We load them into
registers (perform a mapping) only when we want to manipulate or access them during
execution.

Count the number of multiples of X in a given array of 8 non-negative numbers,
where X is a user chosen power-of-two value, e.g. 1, 2, 4, 8, ….

arrayCount.asm

.data

arrayA: .word 1, 0, 2, 0, 3 # arrayA has 5 values

count: .word 999 # dummy value

.text

main:

code to set up the variable mappings

add $zero, $zero, $zero # dummy instructions

can be removed

…………

code for reading in the user value X

code for counting multiples of X in arrayA

code for printing result

code for terminating the program

li $v0, 10

system

Task 2: Getting Real (arrayCount.asm) [18 marks]

When we discuss MIPS code in the lecture, it is common to see the “variable mappings” list.

The list indicates how certain program variables are “mapped” to their respective registers. In

this task, we are going to actually perform these mappings.

First, let us learn about allocating memory space for variables in a program. The assembler

directive ".data" allows us to reserve memory space in the data segment. These reserved

locations are used to store the values of various program variables during program execution.

This is because register is a fast storage in the processor, while memory is a much slower

storage outside the processor. As the access speed is not simulated in QtSpim, the separation

and mapping between memory and register may seem strange to you. In a real processor, the

difference in access speed of register versus memory can be multiple of 10 times!

Let us modify the “count zero element” example from Lecture #8 (Section: Array and Loop)

for this task. For simplicity, let us reduce the array size to 8. The problem statement now reads:

Download arrayCount.asm from Canvas or the course website. The initial content of the file

is:

The main routine contains several dummy instructions (instructions with no real effect) so that

you can step through the program to observe the content in the data segment.

AY2024/25 Semester 2 Week 7 - 4 of 5 - CS2100 Lab #4

Where is the array arrayA located in the data segment? Give the base address (starting

address) of the array:

arrayA is at 0x

Where is the program variable count in the data segment?

count is at 0x

(Hint: Don’t forget that 999 is in decimal.)

The given code only allocates 5 elements for arrayA. Enlarge the array to size 8. You can

place any valid integer values for the new locations. Fill in the assembler directive below:

arrayA:

Now, let us perform the following mappings:

Base address of arrayA ➔ $t0 (similar to notation used in lectures)

count ➔ $t8

You may use the "la" (load address) instruction here to help. Give the instruction sequence

(which may consist of 1 or 2 instructions) below:

To map arrayA:

To map count:

We are almost ready to tackle the task. One last obstacle is to figure out how to check for

“multiples of X, where X is a power-of-two”. Recall that andi instruction can be used to find

the remainder of division by a power of two. For the following questions, give the correct mask

for the andi instruction to compute “$t4 = $t3 % X”.

If X is 32: andi $t4, $t3, 0x

If X is 8: andi $t4, $t3, 0x

Observe that we can easily generate the mask from X. If X is stored in register $t8, complete

the following instruction to generate the mask in register $t5. (Hint: look at the mask as a

number).

 $t5, $t8, (fill in the operation and the last operand)

AY2024/25 Semester 2 Week 7 - 5 of 5 - CS2100 Lab #4

User input X = 2

Three multiples of 2 (0, 22 and 6).

8 user input values
{1, 2, 3, 4, 5, 6, 7, 8}

User input X = 2

Four multiples of 2 = {2, 4, 6, 8}

We are now ready to finish off the task. Write the necessary code to:

a. Read user input value, X. You can assume X is always a power-of-two integer, i.e. there

is no need to check for invalid user input.

b. Count the number of multiples of X in arrayA and print the result on the console.

You should use loop wherever appropriate, or full credit will not be given. Sample code can be

found in Lecture #8 MIPS Part 2 (slides 32-34). Here’s a sample output screenshot for a

predefined array {11, 0, 31, 22, 9, 17, 6, 9} and user input of X = 2. The

output is 3 as there are three multiples of 2 in the array: 0, 22 and 6.

Try to use different values in your code to test. Also, please make sure the “count” value is

properly recorded in the data segment at the end of execution.

Task 3: Making it “real-er” (inputArrayCount.asm) [5 marks]

This is a follow-up task on task 2. First, make a copy of your solution in task 2 and name it

"inputArrayCount.asm".

Your task is very “simple” – add code to read 8 values from the user and store them in the array

arrayA. Then print the number of multiples of X found (where X is a power-of-two also

entered by the user). By reusing your code in task 2, you only need to add a couple of new

instructions. Below is a sample run:

Please note that we read the array values before the user enters the value X. Your labTA will

test your program with some test cases.

Notes: You should prepare your programs before the lab. Your labTA will mark your

work in your presence. You do not need to submit any program. Please do not send your

programs to your labTA after the lab; they will NOT be accepted.

Marking Scheme: Report/Demonstration (25 marks)

