
- 1 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

CS2100 Computer Organisation

Lab #5: Making Function Calls

Name: Student No.:

Lab Group:

Note:

You should prepare your programs before the lab. Your lab TA will mark your work in your

presence. You do not need to submit any program. Please do not send your programs to your

lab TA after the lab; they will not be accepted.

Objective

In this lab, you will use QtSpim to explore the idea of function calls in MIPS Assembly Code.

This document and its associated files (sayHi.asm and arrayFunction.asm) can be

downloaded from Canvas or the CS2100 course website.

Task 1: Getting started (sayHi.asm) [5 marks]

Just like any high-level programming language, modularization (separating code into well-

defined procedures/functions) is an important idea for assembly programming. Conceptually,

making function call is actually simple: we need to "jump" to another portion of code (the

function body) then start executing the instructions in the function body. When we reach the

end of that function, another "jump" is needed to go back to the caller.

0x1000 #some instruction

0x3024 #Body of Function F

0x1004 #Jump to Function F 0x3028 #Body of Function F

0x1008 #Continue after F 0x302C #Done! Jump back to

caller

0x100C #some instruction

… …….….

So, the simplest kind of function call can be accomplished by just two "jump" instructions! To

facilitate function calls, MIPS gives us two variants of the "j" instructions, the "jal" (jump-

and-link) and the "jr" (jump by register). Don’t worry, they are much easier than the name

suggested.

First, download and load the assembly program "sayHi.asm" in QtSpim. The original content

of the file is given on the next page.

Remember to
bring this along
to your lab!

- 2 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

The intention of the program is to print 3 messages in the following order:

The first and third messages are printed in the "main" function while the second message is

printed by the "sayHi" function. The given program is almost complete, with only one missing

instruction. The purpose of this code is to demonstrate the necessary instructions needed for

making a function call.

Now, let us step through the program to make several observations. Use the “Single Step”

button or press F10 to go through the program line by line. Stop when you reach the instruction

"jal sayHi".

Answer: The instruction address of "jal sayHi" is at 0x

sayHi.asm

.data
str1: .asciiz "Before function\n"

str2: .asciiz "After function\n"

str3: .asciiz "Inside function: Say Hi!\n"

.text

main:

li

la

$v0, 4 # system call code for print_string

$a0, str1 # address of string to print

syscall # print the string

jal sayHi # Make a function call to sayHi()

li

la
$v0, 4 # system call code for print_string

$a0, str2 # address of string to print

syscall # print the string

End of main, make a syscall to "exit"

li $v0, 10

syscall

system call code for exit

terminate program

start of function sayHi()

sayHi:

li

la

$v0, 4 # system call code for print_string

$a0, str3 # address of string to print

syscall # print the string

Use "jr" to go back to caller

- 3 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

Press F10 one more time to execute the "jal" instruction. Answer the following:

Answer: The PC is now at 0x

Answer: The register $31 now contains 0x

At this point, you should be able to see why the name of register $31 is $ra (return address).

Express the content of register $31 with respect to the instruction address of the corresponding

"jal" instruction. Use the notation Addr(jal) to indicate the instruction address of "jal"

instruction.

Answer: $31 =

If you continue stepping through, we will reach the end of the "sayHi" function and get

‘stuck’. We need a way to go back to the main function and continue from where we left off.

We can do this easily by the "jr" (jump by register) instruction which is missing in the

program. This "jr" instruction takes a register number as operand. It will jump to the address

stored in the specified register. For example,

jr $15

The content of register $15 will be used as the target address. This is known as direct

addressing (the address is directly specified in full).

What is the correct register number to be used in the "jr" instruction so that we can jump back

to main?

Answer: jr

Now, edit your code and insert the "jr" instruction accordingly. Run your program, you should

see the 3 messages in the same order as shown in the earlier output screenshot.

- 4 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

li $v0, 5

syscall

sw $v0, 0($t1)

System call code for read_int

"return result" is in $v0

Key idea: we can pass information to the function by placing values in registers and

retrieve the return result in the same way.

.data

array: .word 8, 2, 1, 6, 9, 7, 3, 5, 0, 4

newl: .asciiz "\n"

.text

main:

Print the original content of array

setup the parameter(s)

call the printArray function

Ask the user for two indices

li $v0, 5 # System call code for read_int

syscall

addi $t0, $v0, 0

li $v0, 5

first user input in $t0

System call code for read_int

syscall

addi $t1, $v0, 0 # second user input in $t1

Call the findMin function

setup the parameter(s)

call the function

Print the min item

<code not shown>

Calculate and print the index of min item

<code not shown>

End of main, make a syscall to "exit"

li $v0, 10

syscall

system call code for exit

terminate program

Task 2: Let's share information (arrayFunction.asm) [15 marks]

We can now turn to other aspects of function call, namely function parameters (arguments) and

function return value. Actually, we have encountered this idea in previous labs. Take a look at

this very familiar sequence of using the system call read_int:

You can see that there is an agreement to use the register $v0 to store the system call code for

the system call (a special kind of function call). Additionally, the return result (an integer read

from user) is placed in register $v0 when the system call is completed.

Let us first attempt to pass information to a function. Download and load the

arrayFunction.asm in QtSpim. The main function code is given below (this is not the

whole content; see the file for the complete content):

- 5 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

Function findMin

Input: Lower Array Pointer in $a0, Higher Array Pointer in $a1

Output: $v0 contains the address of minimum item

Purpose: Find and return the minimum item

between $a0 and $a1 (inclusive)

Registers used: <Fill in with your register usage>

Assumption: Array element is word size (4-byte), $a0 <= $a1

findMin:

Your implementation here

jr $ra # return from this function

The basic flow of the program is as follows:

1. Print the original content of array.

2. Ask the user for two indices X and Y, where X  Y.

3. Find the minimum item between A[X] and A[Y] (inclusive).

4. Print the minimum item and the index of the minimum item.

You’ll need to code for parts 1, 3 and 4. Again, don’t panic as most of the code are already

written! For part 1, the following function is already given in the program:

Function printArray ###

Input: Array Address in $a0, Number of elements in $a1

Output: None

Purpose: Print array elements

Registers used: $t0, $t1, $t2, $t3

Assumption: Array element is word size (4-byte)

printArray:

addi $t1, $a0, 0 # $t1 is the pointer to the item

sll $t2, $a1, 2 # $t2 is the offset beyond the last item

add $t2, $a0, $t2 # $t2 is pointing beyond the last item

loop:

beq $t1, $t2, end

lw $t3, 0($t1) # $t3 is the current item

li $v0, 1 # system call code for print_int

 addi $a0, $t3, 0 # integer to print

 syscall # print it

 addi $t1, $t1, 4

 j loop # Another iteration

end:

 li $v0, 4 # system call code for print_string

 la $a0, newl #

 syscall # print newline

 jr $ra # return from this function

The comments at the beginning of the function give you a good idea of how to make use of this

function. Pay special attention to the “input” information, which tells you where to place the

expected parameters. Without changing this function, complete the first part of the main

program. You only need to place the correct information in the registers $a0 and $a1 then

make a function call. Test your program, and you should see the original content of array printed

on screen. (Hint: Don’t forget the use of "li" and "la" instructions).

Now, let’s tackle something slightly more challenging. Let us now write a function to find the

minimum element. The function header is given in the program as follows:

- 6 of 6 - CS2100 Lab #5 AY2024/25 Semester 2 Week 8

Minimum item between A[0] to A[4], i.e. {8, 2, 1, 6, 9}

 Minimum item is “1”

 Minimum item is at index 2

Minimum item between A[7] to A[9], i.e. {5, 0, 4}

 Minimum item is “0”

 Minimum item is at index 8

Note that the function expects two addresses, i.e. the addresses of A[X] and A[Y] in registers

$a0 and $a1 respectively. Once the minimum item is found, the address of the minimum item

is returned to the caller. You are supposed to use the array pointer approach (Lecture #8, Slide

35 & Tutorial #3, Q1b) to implement the findMin function.

Once you have written the findMin function, you are left with the last piece of puzzle to solve.

How do you find out the index of an item from the address of the item? (Hint: think about how

we calculate the address of an item given the index of the item.)

Complete the main function by calling the findMin function. Then print both the minimum item

and the index of the minimum item.

Below are two separate test runs (user input circled):

Your lab TA will test your program with some test cases.

Notes: You should prepare your programs before the lab. Your lab TA will mark your work in

your presence. You do not need to submit any program. Please do not send your programs to

your lab TA after the lab; they will not be accepted.

Marking Scheme: Report (5 marks), Demonstration (15 marks); Total: 20 marks.

