CS2100 Computer Organisation Lab #8: Using Logisim I

(Week 11: 31 March – 4 April 2025)

[This document is available on Canvas and course website https://www.comp.nus.edu.sg/~cs2100]

Name:	Student No:				
Lab Group:	Important: You should complete the report before you come for your lab or you may not have enough time to complete it. For Monday lab groups, please see point 11.				

Objective:

You will learn to use **logisim** to analyse a simple circuit and create a 4-bit parallel adder.

Preparation (before the lab):

1. Download **logisim** from the website: <u>http://www.cburch.com/logisim/download.html</u> (Logisim has been installed in the computers in the labs.)

Getting Logisim

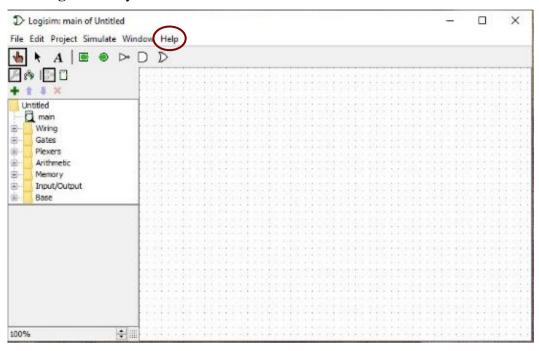
Logisim should run on any platform supporting Java, version 5 or later.

Download Documentation Release History Q & A Comments Links

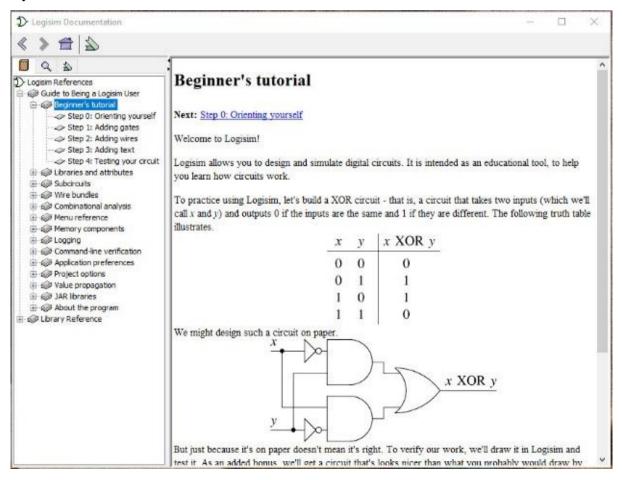
LOGISIM a graphical tool for designing

and simulating logic circuits

[de] Deutsch
[el] Ελληνικά
[en] English
[pt] Português
[ru] Русский

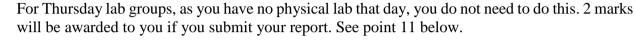

- Logisim requires Java 5 or later. If you do not already have it on your computer, Java is available from java.sun.com.
- Download Logisim from Logisim's SourceForge.net page. You will three choices of which release to download.
 - · A . jar file runs on any platform, though not necessarily conveniently.
 - A MacOS .tar.gz file
 - A Windows .exe file

If you use MacOS or Windows, I would recommend using the release specific to your platform.


3. To execute the program:

- With the generic .jar file: On Windows and MacOS systems, you will likely be able to start Logisim by double-clicking the JAR file. If that doesn't work, or if you use Linux or Solaris, you can type ``java -jar logisim-XX.jar" at the command line.
- With the MacOS X version: Once the downloaded .tar.gz version is uncompressed (this will likely happen automatically), just double-click the Logisim icon to start. You may want to place the icon into the Applications folder.
- With the Windows version: Just double-click the Logisim icon. You may want to create a shortcut on the desktop and/or in the Start menu to make starting Logisim easier.

2. Run **logisim** and you will see this screen:


3. Click on "Help" → "Tutorial" and read "Beginner's tutorial". Familiarise yourself with the basic working of the software. Go through the 5 steps in the tutorial and create some simple circuits yourself.

3. What is the name of the circuit?

Answer:

your labTA.

5. Click "Project" \rightarrow "Analyze Circuit". Click on "Table", and fill in the table below with what you have observed. (If you find that the outputs do not appear in the same column-order as in the table below, you can change the order by clicking on "Outputs".) [2 marks]

S

C

2. Open **lab8.circ** in Logisim. Select the "Poke" tool $\frac{1}{2}$ and then click on the inputs X, Y and Z to

4. The circuit has two outputs S and C, but they are not labelled. Add the labels correctly. Show

		1	0	0					
		1	0	1					
		1	1	0					
		1	1	1					
6. Still at "Project" \rightarrow "Analyze Circuit". Click on "Minimized". Below the K-map of an output									
you should see the simplified SOP expressions for that output. Write down the simplified SOP									
	expressions for the two	outpu	its S a	nd C			[2 marks]		

Ζ

0

1

0

1

Y

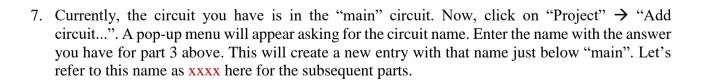
0

0

1

1

X 0


0

0

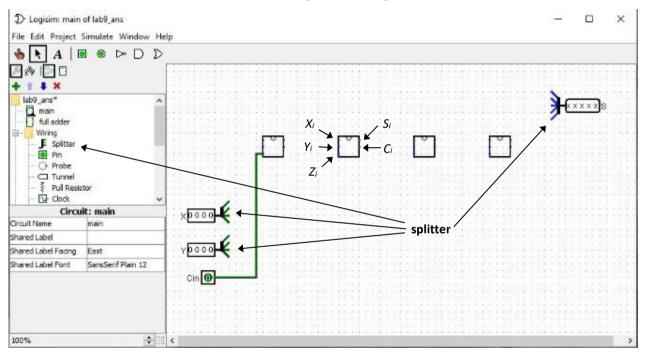
0

S =

C = _____

CS2100 Lab #8

[2 marks]


[1 mark]

Procedure:

1. Download the file lab8.circ from Canvas or the CS2100 website.

toggle their values, and observe the changes in the outputs.

- 8. Transfer the circuit you have in "main" (using the select button \square and click and hold the left mouse button to select the whole circuit, then press **ctrl-x** to cut) and paste it into the newly created "xxxx" circuit (click on "xxxx" making sure the magnifying glass is over it and press **ctrl-v** to paste).
- 9. Go back to the "main" circuit (which should be empty now). Create a **4-bit parallel adder** here by using 4 copies of the xxxx circuit you have created earlier. A partial diagram is shown below.
 - Each xxxx is represented by a block diagram. The labels are indicated in one of the block diagrams below for your reference.
 - The 4-bit inputs *X* and *Y* are created by clicking on the input pin button and specifying 4 data bits in the attribute table. Likewise, the 5-bit output *S* is created by clicking on the output pin button and specifying 5 data bits in the attribute table.
 - Splitters (refer to the Logisim tutorial, "Wire bundles" → "Splitters" for more details) are used to route the different bits in the inputs and outputs.

10. Show the completed 4-bit parallel adder circuit to your labTA.

[8 marks]

11. For Monday lab groups (B03 – B08), you are to email your (a) lab report and (b) your logisim file (.circ) to your labTA, by end of Tuesday 1 April 2025.

Report: 5 marks Demonstration: Part 4 (2 marks), Part 10 (8 marks) Total: 15 marks