CS2100 Computer Organization
Tutorial 1
C and Number Systems
SUGGESTED SOLUTIONS

1. In 2’s complement representation, “sign extension” is used when we want to represent an n-
bit signed integer as an m-bit signed integer, where m > n. We do this by copying the MSB (most
significant bit) of the n-bit number m — n times to the left of the n-bit number to create the m-
bit number.

For example, we want to sign-extend 0110, to an 8-bit number. Here n =4, m = 8, and thus we
copy the MSB bit 0 four (8 — 4) times, giving 00000110s.

Similarly, if we want to sign-extend 10105 to an 8-bit number, we would get 111110105s.

Show that IN GENERAL, sign extension is value-preserving. For example, 0000011025 = 0110y
and 1111101025 = 1010zs.

Answer:

Let X be the n-bit signed integer and Y be the m-bit signed integer which is the sign-extended
version of X.

If the MSB of X is zero, this is straightforward, since padding more 0’s to the left adds nothing
to the final value. If the MSB of X is one, then it is trickier to prove. In the original n-bit
representation, the MSB has a weight of —27~1 giving us

X =-—2n"1 + bn—2 .« 2n—2 + bn_3 .« 2n-3 + -+ b().

Let Z = bn—Z - 2n—2 4 bn_g P 203 e 4 bo, then X = —2n-1 4+ Z.
In the new m-bit representation Y where m > n, the MSB of Y has a weight of —2™~1, and since
we copy the MSB (i.e. the leftmost bit) of X a total of m —n times, we get

Y =—-2m-142m=2 4 2m=3 f ... 4 2n 4 2n-1 4 7,

For Y = X, it suffices to show that —2m-1 4 2m-2 4 2m=3 4 ... 4 2n 4 2n-1 = —7n-1,

Recall that the sum of a Geometric Progression with N terms, initial value a and ratio r is given
a(rN-1)
by:

N=(m-2)—-(n—-1)+1=m-n;a=2vtandr = 2.

. We will use this formula to calculate 2m=2 4 om-3 + -+ 2 on-1, which has

—2m—1 + (2m—2 + 2m—3 + o420+ 2n—1)
a(rv — 1)

— —_72m—1 _—

=-2 + pr—

= —2m-1 4 2n—1(2m—n — 1)

= —pm-1 + om=1 _ on-1
= —on-1

Therefore, Y = X.

AY2024/25 Semester 1 Page 1 of 6 Tutorial 1 answers

2. We generalize (r — 1)’s-complement (also called radix diminished complement) to include
fraction as follows:

(r—1)’'s complementof N=r"-r"-N

where n is the number of integer digits and m the number of fractional digits. (If there are no
fractional digits, then m = 0 and the formula becomes r" — 1 — N as given in class.)

For example, the 1’s complement of 011.01 is (23 — 272) - 011.01 = (1000 — 0.01) — 011.01 =
111.11-011.01 = 100.10. (Since 011.01 represents the decimal value 3.25 in 1’s complement,
this means that -3.25 is represented as 100.10 in 1’s complement.)

Perform the following binary subtractions of values represented in 1's complement
representation by using addition instead. (Note: Recall that when dealing with complement
representations, the two operands must have the same number of digits.)

(a) 0101.11-010.0101
(b) 010111.101-0111010.11

Is sign extension used in your working? If so, highlight it.

Check your answers by converting the operands and answers to their actual decimal values.

Answers:
(a) 0101.1100-0010.0101 = 0101.1100 + 1101.1010 = 0011.0111;;
(Check: 5.75 -2

(b) 0010111.101-0111010.110 = 11.101 + 1000101.001 =>»
1011100.110;5 = —0100011.001,

(Check: 23.625 — 58.75 = —35.125) Note that two trailing

zeroes are added. (This
is not sign extension.)

Note that sign-extension is used above.

3. Convert the following numbers to fixed-point binary in 2’s complement, with 4 bits for the
integer portion and 3 bits for the fraction portion.

(@) 1.75 (b) -2.5 (c) 3.876 (d) 2.1

Using the binary representations you have derived, convert them back into decimal. Comment
on the compromise between range and accuracy of the fixed-point binary system.

Answers:
(a) 1.75
(0001.110)xs
(b) -2.5
Begin with 2.5: (0010.100)2s. Invert and add 0.001: (1101.100)zs

(c) 3.876
0.876 x 2 = 1.752

0.752 x2=1.504

0.504 x 2 =1.008

0.008 x 2 =0.016 (why perform 4 steps instead of 3?)
S0 0.87610=0.11102s=0.1115

Answer: (0011.111)

AY2024/25 Semester 1 Page 2 of 6 Tutorial 1 answers

(d) 2.1
0.1x2=0.2
0.2x2=04
0.4x2=0.8
0.8 x 2 =1.6 (why perform 4 steps instead of 3?)
S0 0.110 = 0.0001,s = 0.001
Putting it together we have: 2.11p = (0010.001)2s

The first two will convert back exactly to 1.75 and -2.5, so that’s ok.

For (c), the fraction partis 0.111, = 0.5 + 0.25 + 0.125 = 0.875, which is just off the target of
0.876 by 0.001. Not bad.

For (d), the fraction part is 0.001, = 0.125. This is off the actual value of 0.1 by 0.025, quite a
lot.

Comment: Not all values can be represented exactly, and the precision depends on the
number of bits in the fraction part. In this case 3 bits is too little to even represent 0.1,
because the smallest fraction it can represent is 0.125.

4, [AY2010/2011 Semester 2 Term Test #1]
How would you represent the decimal value —0.078125 in the IEEE 754 single-precision
representation? Express your answer in hexadecimal. Show your working.

Answer:BDAO0O0OOO
-0.078125 =-0.000101, =-1.01 x 24
Exponent=-4+127 =123 =01111011;
1 01111011 0100000...
1011 1101 1010 0000 ..
BDAOOOOO

AY2024/25 Semester 1 Page 3 of 6 Tutorial 1 answers

5. Given the partial C program shown below, complete the two functions: readArray() to read
data into an integer array (with at most 10 elements) and reverseArray() to reverse the array.
For reverseArray(), you are to provide two versions: an iterative version and a recursive version.
For the recursive version, you may write an auxiliary/driver function to call the recursive
function.

#include <stdio.h>
#define MAX 10

int readArray(int [], int);
void printArray(int [], int);
void reverseArray (int [], int);

int main(void) {
int array[MAX], numElements;

numElements = readArray (array, MAX) ;
reverseArray (array, numElements) ;
printArray (array, numElements) ;

return O;

}

int readArray(int arr[], int limit) ({

/...

printf ("Enter up to %d integers, terminating with a negative
integer.\n", limit);

//
}

void reverseArray (int arr[], int size) ({

//
}

void printArray (int arr[], int size) {
int i;

for (i=0; i<size; i++) {
printf("%d ", arr[i]);

}
printf("\n") ;

AY2024/25 Semester 1 Page 4 of 6 Tutorial 1 answers

Answers:

int readArray(int arr[], int limit) {
int i, input;

printf ("Enter up to %d integers, terminating with a negative
integer.\n", limit);
i=20;
scanf ("%d", &input);
while (input >= 0) {
arr[i] = input;
i++;
scanf ("%$d", &input);
}

return 1i;

// Iterative version

// Other solutions possible

void reverseArray (int arr[], int size) {
int left=0, right=size-1, temp;

while (left < right) {
temp = arr[left]; arr[left] = arr[right]; arr[right] = temp;
left++; right--;

// Recursive version

// RAuxiliary/driver function for the recursive function

// reverseArrayRec ()

void reverseArrayV2 (int arr[], int size) {
reverseArrayRec (arr, 0, size-1);

}

void reverseArrayRec(int arr[], int left, int right) ({
int temp;

if (left < right) {
temp = arr[left]; arr[left] = arr[right]; arr[right] = temp;
reverseArrayRec (arr, left+l, right-1);

AY2024/25 Semester 1 Page 5 of 6 Tutorial 1 answers

6. Trace the following program manually (do not run it on a computer) and write out its output.
When you present your solution, draw diagrams to explain.

#include <stdio.h>

int main(void) {
int a =3, *b, ¢, *d, e, *f;

b = &a;
*b = 5;
c = *b * 3;
d = b;

printf("a = %d, ¢ = %d, e = %d\n", a, c, e);
printf("*b = %d, *d = %d, *f = %d\n", *b, *d, *f);

return O;

Answers:

a=55 c=15, e =0
*b = 55, *d = 55, *£ =0

AY2024/25 Semester 1 Page 6 of 6 Tutorial 1 answers

	CS2100 Computer Organization Tutorial 1

