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CS2100 Computer Organization 
Tutorial 1 

C and Number Systems 
SUGGESTED SOLUTIONS 

 
1. In 2’s complement representation, “sign extension” is used when we want to represent an n- 

bit signed integer as an m-bit signed integer, where m > n. We do this by copying the MSB (most 
significant bit) of the n-bit number m – n times to the left of the n-bit number to create the m- 
bit number. 

For example, we want to sign-extend 01102s to an 8-bit number. Here n = 4, m = 8, and thus we 
copy the MSB bit 0 four (8 – 4) times, giving 000001102s. 

Similarly, if we want to sign-extend 10102s to an 8-bit number, we would get 111110102s. 

Show that IN GENERAL, sign extension is value-preserving. For example, 000001102s = 01102s 

and 111110102s = 10102s. 

Answer: 
 

Let 𝑋𝑋 be the n-bit signed integer and 𝑌𝑌 be the m-bit signed integer which is the sign-extended 
version of 𝑋𝑋. 

 
If the MSB of 𝑋𝑋 is zero, this is straightforward, since padding more 0’s to the left adds nothing 
to the final value. If the MSB of 𝑋𝑋 is one, then it is trickier to prove. In the original n-bit 
representation, the MSB has a weight of −2𝑛𝑛−1 giving us 

𝑋𝑋 = −2𝑛𝑛−1 + 𝑏𝑏𝑛𝑛−2 ∙ 2𝑛𝑛−2 + 𝑏𝑏𝑛𝑛−3 ∙ 2𝑛𝑛−3 + ⋯ + 𝑏𝑏0. 
 

Let 𝑍𝑍 = 𝑏𝑏𝑛𝑛−2 ∙ 2𝑛𝑛−2 + 𝑏𝑏𝑛𝑛−3 ∙ 2𝑛𝑛−3 + ⋯ + 𝑏𝑏0, then 𝑋𝑋 = −2𝑛𝑛−1 + 𝑍𝑍. 

In the new m-bit representation 𝑌𝑌 where m > n, the MSB of 𝑌𝑌 has a weight of −2𝑚𝑚−1, and since 
we copy the MSB (i.e. the leftmost bit) of 𝑋𝑋 a total of m – n times, we get 

𝑌𝑌 = −2𝑚𝑚−1 + 2𝑚𝑚−2 + 2𝑚𝑚−3 + ⋯ + 2𝑛𝑛 + 2𝑛𝑛−1 + 𝑍𝑍. 
 

For 𝑌𝑌 = 𝑋𝑋, it suffices to show that −2𝑚𝑚−1 + 2𝑚𝑚−2 + 2𝑚𝑚−3 + ⋯ + 2𝑛𝑛 + 2𝑛𝑛−1 = −2𝑛𝑛−1. 
 

Recall that the sum of a Geometric Progression with 𝑁𝑁 terms, initial value 𝑎𝑎 and ratio 𝑟𝑟 is given 
𝑎𝑎(𝑟𝑟𝑁𝑁−1) 

by: . We will use this formula to calculate 2 𝑚𝑚−2 + 2𝑚𝑚−3 + ⋯ + 2𝑛𝑛 + 2𝑛𝑛−1 , which has 
𝑟𝑟−1 

𝑁𝑁 = (𝑚𝑚 − 2) − (𝑛𝑛 − 1) + 1 = 𝑚𝑚 − 𝑛𝑛; 𝑎𝑎 = 2𝑛𝑛−1 and 𝑟𝑟 = 2. 
 

−2𝑚𝑚−1 + (2𝑚𝑚−2 + 2𝑚𝑚−3 + ⋯ + 2𝑛𝑛 + 2𝑛𝑛−1)  
𝑎𝑎(𝑟𝑟𝑁𝑁 − 1) 

= −2𝑚𝑚−1 +  
 

𝑟𝑟 − 1 
= −2𝑚𝑚−1 + 2𝑛𝑛−1(2𝑚𝑚−𝑛𝑛 − 1) 
= −2𝑚𝑚−1 + 2𝑚𝑚−1 − 2𝑛𝑛−1 

= −2𝑛𝑛−1 

 

 
Therefore, 𝑌𝑌 = 𝑋𝑋. 
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Answers: 
(a) 0101.1100 – 0010.0101  0101.1100 + 1101.1010  0011.01111s 

(Check: 5.75 – 2.3125 = 3.4375) 

(b) 0010111.101 – 0111010.110  0010111.101 + 1000101.001  
1011100.1101s = –0100011.0012 
(Check: 23.625 – 58.75 = –35.125) 

Note that sign-extension is used above. 

Note that two trailing 
zeroes are added. (This 
is not sign extension.) 

2. We generalize (r – 1)’s-complement (also called radix diminished complement) to include 
fraction as follows: 

(r – 1)’s complement of N = rn – r–m – N 
where n is the number of integer digits and m the number of fractional digits. (If there are no 
fractional digits, then m = 0 and the formula becomes rn – 1 – N as given in class.) 

For example, the 1’s complement of 011.01 is (23 – 2–2) – 011.01 = (1000 – 0.01) – 011.01 = 
111.11 – 011.01 = 100.10. (Since 011.01 represents the decimal value 3.25 in 1’s complement, 
this means that -3.25 is represented as 100.10 in 1’s complement.) 

Perform the following binary subtractions of values represented in 1’s complement 
representation by using addition instead. (Note: Recall that when dealing with complement 
representations, the two operands must have the same number of digits.) 

(a) 0101.11 – 010.0101 
(b) 010111.101 – 0111010.11 

Is sign extension used in your working? If so, highlight it. 

Check your answers by converting the operands and answers to their actual decimal values. 

 

 
3. Convert the following numbers to fixed-point binary in 2’s complement, with 4 bits for the 

integer portion and 3 bits for the fraction portion. 

(a) 1.75 (b) -2.5 (c)  3.876 (d) 2.1 

Using the binary representations you have derived, convert them back into decimal. Comment 
on the compromise between range and accuracy of the fixed-point binary system. 

 
Answers: 

(a) 1.75 
(0001.110)2s 

(b) -2.5 
Begin with 2.5: (0010.100)2s. Invert and add 0.001: (1101.100)2s 

(c) 3.876 
0.876 × 2 = 1.752 
0.752 × 2 = 1.504 
0.504 × 2 = 1.008 
0.008 × 2 = 0.016 (why perform 4 steps instead of 3?) 
So 0.87610 = 0.11102s = 0.1112s 
Answer: (0011.111)2s 
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Answer: B D A 0 0 0 0 0 
-0.078125 = -0.0001012 = -1.01 × 2-4 
Exponent = -4 + 127 = 123 = 011110112 
1 01111011 0100000… 
1011 1101  1010  0000  … 
B D A 0 0 0 0 0 

(d) 2.1 
0.1 × 2 = 0.2 
0.2 × 2 = 0.4 
0.4 × 2 = 0.8 
0.8 × 2 = 1.6 (why perform 4 steps instead of 3?) 
So 0.110 = 0.00012s = 0.0012s 
Putting it together we have: 2.110 = (0010.001)2s 

 
The first two will convert back exactly to 1.75 and -2.5, so that’s ok. 

For (c), the fraction part is 0.1112 = 0.5 + 0.25 + 0.125 = 0.875, which is just off the target of 
0.876 by 0.001. Not bad. 

For (d), the fraction part is 0.0012 = 0.125. This is off the actual value of 0.1 by 0.025, quite a 
lot. 

Comment: Not all values can be represented exactly, and the precision depends on the 
number of bits in the fraction part. In this case 3 bits is too little to even represent 0.1, 
because the smallest fraction it can represent is 0.125. 

 
4. [AY2010/2011 Semester 2 Term Test #1] 

How would you represent the decimal value –0.078125 in the IEEE 754 single-precision 
representation? Express your answer in hexadecimal. Show your working. 
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#include <stdio.h> 
#define MAX 10 
 
int readArray(int [], int); 
void printArray(int [], int); 
void reverseArray(int [], int); 

int main(void) { 
int array[MAX], numElements; 

numElements = readArray(array, MAX); 
reverseArray(array, numElements); 
printArray(array, numElements); 

 
return 0; 

} 

int readArray(int arr[], int limit) { 
 

// ... 
printf("Enter up to %d integers, terminating with a negative 

integer.\n", limit); 
// ... 

} 
 
void reverseArray(int arr[], int size) { 
 

// ... 
} 

void printArray(int arr[], int size) { 
int i; 

 
for (i=0; i<size; i++) { 

printf("%d ", arr[i]); 
} 
printf("\n"); 

} 

5. Given the partial C program shown below, complete the two functions: readArray() to read 
data into an integer array (with at most 10 elements) and reverseArray() to reverse the array. 
For reverseArray(), you are to provide two versions: an iterative version and a recursive version. 
For the recursive version, you may write an auxiliary/driver function to call the recursive 
function. 
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int readArray(int arr[], int limit) { 
int i, input; 

 
printf("Enter up to %d integers, terminating with a negative 

integer.\n", limit); 
i = 0; 
scanf("%d", &input); 
while (input >= 0) { 

arr[i] = input; 
i++; 
scanf("%d", &input); 

} 
return i; 

} 

// Iterative version 
// Other solutions possible 
void reverseArray(int arr[], int size) { 

int left=0, right=size-1, temp; 

while (left < right) { 
temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; 
left++; right--; 

} 
} 

// Recursive version 
// Auxiliary/driver function for the recursive function 
// reverseArrayRec() 
void reverseArrayV2(int arr[], int size) { 

reverseArrayRec(arr, 0, size-1); 
} 
 
void reverseArrayRec(int arr[], int left, int right) { 

int temp; 
 

if (left < right) { 
temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; 
reverseArrayRec(arr, left+1, right-1); 

} 
} 

Answers: 
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#include <stdio.h> 
 
int main(void) { 

int a = 3, *b, c, *d, e, *f; 
 

b = &a; 
*b = 5; 
c = *b * 3; 
d = b; 
e = *b + c; 
*d = c + e; 
f = &e; 
a = *f + *b; 
*f = *d - *b; 

 
printf("a = %d, c = %d, e = %d\n", a, c, e); 
printf("*b = %d, *d = %d, *f = %d\n", *b, *d, *f); 

 
return 0; 

} 

a = 55, c = 15, e = 0 
*b = 55, *d = 55, *f = 0 

6. Trace the following program manually (do not run it on a computer) and write out its output. 
When you present your solution, draw diagrams to explain. 

 

 
Answers: 
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