
Page 1 of 3 AY2024/25 Semester 1 Tutorial 1

CS2100 Computer Organization
Tutorial 1: C and Number Systems
(Week 3: 26 Aug – 30 Aug 2024)

1. In 2’s complement representation, “sign extension” is used when we want to represent an n-
bit signed integer as an m-bit signed integer, where m > n. We do this by copying the MSB (most
significant bit) of the n-bit number m – n times to the left of the n-bit number to create the m-
bit number.

For example, we want to sign-extend 01102s to an 8-bit number. Here n = 4, m = 8, and thus we
copy the MSB bit 0 four (8 – 4) times, giving 000001102s.

Similarly, if we want to sign-extend 10102s to an 8-bit number, we would get 111110102s.

Show that IN GENERAL, sign extension is value-preserving. For example, 000001102s = 01102s
and 111110102s = 10102s.

2. We generalize (r – 1)’s-complement (also called radix diminished complement) to include

fraction as follows:

(r – 1)’s complement of N = rn – r–m – N
where n is the number of integer digits and m the number of fractional digits. (If there are no
fractional digits, then m = 0 and the formula becomes rn – 1 – N as given in class.)

For example, the 1’s complement of 011.01 is (23 – 2–2) – 011.01 = (1000 – 0.01) – 011.01 =
111.11 – 011.01 = 100.10. (Since 011.01 represents the decimal value 3.25 in 1’s complement,
this means that -3.25 is represented as 100.10 in 1’s complement.)

Perform the following binary subtractions of values represented in 1’s complement
representation by using addition instead. (Note: Recall that when dealing with complement
representations, the two operands must have the same number of digits.)

(a) 0101.11 – 010.0101
(b) 010111.101 – 0111010.11

Is sign extension used in your working? If so, highlight it.

Check your answers by converting the operands and answers to their actual decimal values.

3. Convert the following numbers to fixed-point binary in 2’s complement, with 4 bits for the

integer portion and 3 bits for the fraction portion.

(a) 1.75 (b) -2.5 (c) 3.876 (d) 2.1

Using the binary representations you have derived, convert them back into decimal. Comment
on the compromise between range and accuracy of the fixed-point binary system.

Page 2 of 3 AY2024/25 Semester 1 Tutorial 1

#include <stdio.h>
#define MAX 10

int readArray(int [], int);
void printArray(int [], int);
void reverseArray(int [], int);

int main(void) {

int array[MAX], numElements;

numElements = readArray(array, MAX);
reverseArray(array, numElements);
printArray(array, numElements);

return 0;

}

int readArray(int arr[], int limit) {

// ...
printf("Enter up to %d integers, terminating with a negative

integer.\n", limit);
// ...

}

void reverseArray(int arr[], int size) {

// ...
}

void printArray(int arr[], int size) {

int i;

for (i=0; i<size; i++) {
printf("%d ", arr[i]);

}
printf("\n");

}

4. How would you represent the decimal value –0.078125 in the IEEE 754 single-precision
representation? Express your answer in hexadecimal. Show your working.

5. Given the partial C program shown below, complete the two functions: readArray() to read

data into an integer array (with at most 10 elements) and reverseArray() to reverse the array.
For reverseArray(), you are to provide two versions: an iterative version and a recursive version.
For the recursive version, you may write an auxiliary/driver function to call the recursive
function.

Page 3 of 3 AY2024/25 Semester 1 Tutorial 1

#include <stdio.h>

int main(void) {

int a = 3, *b, c, *d, e, *f;

b = &a;
*b = 5;
c = *b * 3;
d = b;
e = *b + c;
*d = c + e;
f = &e;
a = *f + *b;
*f = *d - *b;

printf("a = %d, c = %d, e = %d\n", a, c, e);
printf("*b = %d, *d = %d, *f = %d\n", *b, *d, *f);

return 0;

}

6. Trace the following program manually (do not run it on a computer) and write out its output.
When you present your solution, draw diagrams to explain.

Remember to post on the Canvas forum or QnA if you have any queries.

	CS2100 Computer Organization Tutorial 1: C and Number Systems (Week 3: 26 Aug – 30 Aug 2024)

