
AY2024/25 Semester 1 - 1 of 7 - CS2100 Tutorial #2 Answers

CS2100 Computer Organization
Tutorial #2: C and MIPS
2 – 6 September 2024

SUGGESTED SOLUTIONS

Exploration: C to MIPS

Go to this website https://godbolt.org/ and copy the C code below into the left box, and ensure
that you choose “C” in the dropdown list (circled green), and choose “mips (el) gcc 5.4” or “mips
gcc 5.4” in the dropdown list (circled red). (Do not choose “mips64 gcc 5.4”.)

int main(void) {
 int a, b, c;

 a = 3;
 b = 5;
 c = a + b;
 return 0;
}

This is just for your exploration.

We cover sw, lw and j in class. Some of the MIPS instructions such as addiu and addu shown above
are not covered; instead, we cover add and addi. The nop instruction will be mentioned in the topic
on Pipelining later. move and li are pseudo-instructions. In general, we do not use pseudo-
instructions, except for li and la which you will learn in your labs.

You will use QTSpim, a MIPS simulator, for your labs later.

https://godbolt.org/

AY2024/25 Semester 1 - 2 of 7 - CS2100 Tutorial #2 Answers

Self-Check (these will not be covered in tutorials. You may discuss this on SeTS if you have any
queries):

For each of the following instructions, indicate if it is valid or not (refer to the comment for the
intention). If not, explain why and suggest a correction. Note that the “|” in the comment in (d) is
the bitwise OR operation.

Note: 0x indicates hexadecimal value; 0b indicates binary value. Examples: 0x12 = 1810; 0b1101 =
1310.

a. add $t1, $t2, $t3 # $t3 = $t1 + $t2
b. addi $t1, $0, 0x25 # $t1 = 37
c. subi $t2, $t1, 3 # $t2 = $t1 – 3
d. ori $t3, $t4, 0xAC120000 # $t3 = $t4 | 0xAC120000
e. sll $t5, $t2, 0x21 # shift left $t2 33 bits and store in $t5

Answers:

a. Wrong source and destination registers since the intention is to add $t1 with $t2 and put the result
in $t3:

add $t3, $t1, $t2

b. Valid.

c. There is no subi instruction in MIPS. Use addi instead:

addi $t2, $t1, -3

d. Immediate operand is 16-bit long only. Need to use lui to load the upper 16 bits:

lui $t0, 0xAC12
or $t3, $t4, $t0

e. Shift distance must be in the range [0, 31] as the shift field is 5-bit long.

AY2024/25 Semester 1 - 3 of 7 - CS2100 Tutorial #2 Answers

Tutorial questions:

1. C bitwise operations
Find out about the following bitwise operations in C.
 | (bitwise OR)
 & (bitwise AND)
 ^ (bitwise XOR)
 ~ (one’s complement)
 << (left shift)
 >> (right shift)

Using the following C program as a template, illustrate the above bitwise operations with your
own examples. Note that variables of the data type char take up one byte (8 bits) of memory.

#include <stdio.h>

typedef unsigned char byte_t;

void printByte(byte_t);

int main(void) {
 byte_t a, b;

 a = 5;
 b = 22;
 printf("a = "); printByte(a); printf("\n");
 printf("b = "); printByte(b); printf("\n");
 printf("a|b = "); printByte(a|b); printf("\n");
 return 0;
}

void printByte(byte_t x) {
 printf("%c%c%c%c%c%c%c%c",
 (x & 0x80 ? '1': '0'),
 (x & 0x40 ? '1': '0'),
 (x & 0x20 ? '1': '0'),
 (x & 0x10 ? '1': '0'),
 (x & 0x08 ? '1': '0'),
 (x & 0x04 ? '1': '0'),
 (x & 0x02 ? '1': '0'),
 (x & 0x01 ? '1': '0'));
}

Note to tutors:
1. Bitwise operators not covered in lecture. Hence this tutorial question for them to explore

(and relate to MIPS instructions AND, XOR, etc. later.)
2. Conditional operator ?: not covered in lecture. Explain to students if necessary.
3. Ask students how << and >> are related to arithmetic operations (answer: multiplication and

division by powers of 2) and why they are more efficient.

AY2024/25 Semester 1 - 4 of 7 - CS2100 Tutorial #2 Answers

2. MIPS Bitwise Operations

Implement the following in MIPS assembly. Assume that integer variables a, b and c are
mapped to registers $s0, $s1 and $s2 respectively. Parts (a), (b), (c) are independent of one
another.

For bitwise instructions (e.g. ori, andi, etc), any immediate values you use should be written in
binary for this question. This is optional for non-bitwise instructions (e.g. addi).

Note that bit 31 is the most significant bit (MSB) on the left, and bit 0 is the least significant bit
(LSB) on the right.

(a) Set bits 2, 8, 9, 14 and 16 of b to 1. Leave all other bits unchanged.

(b) Copy over bits 1, 3 and 7 of b into a, without changing any other bits of a.

(c) Make bits 2, 4 and 8 of c the inverse of bits 1, 3 and 7 of b (i.e. if bit 1 of b is 0, then bit 2
of c should be 1; if bit 1 of b is 1, then bit 2 of c should be 0), without changing any other
bits of c.

Answers

(a) Set bits 2, 8, 9, 14 and 16 of b to 1. Leave all other bits unchanged.

To set bits, we create a “mask” with 1 in the bit positions we want to set. Since bit 16 is in
the upper 16 bits of the register, we need to use lui to set it.
lui $t0, 0b1 # Set bit 16 of $t0.
ori $t0, $t0, 0b0100001100000100 # Set bits 14, 9, 8 and 2.
or $s1, $s1, $t0

(b) Copy over bits 1, 3 and 7 of b into a, without changing any other bits of a.

We use the property that x AND 1 = x to copy out the values of
bits 7, 3 and 1 of b into $t0. Note that we zero all other bits
so that they don’t change anything in $s0 when we OR later on.
andi $t0, $s1, 0b0000000010001010

We use the property of x OR 0 = x to copy in
the bits into a, so we prepare a by zero-ing bits 7, 3 and 1.
To do this we need the mask 1111111111111111 1111111101110101
lui $t1, 0b1111111111111111
ori $t1, $t1, 0b1111111101110101
and $s0, $s0, $t1

Now OR together a and $t0 to copy over the bits
or $s0, $s0, $t0

AY2024/25 Semester 1 - 5 of 7 - CS2100 Tutorial #2 Answers

(c) Make bits 2, 4 and 8 of c the inverse of bits 1, 3 and 7 of b (i.e. if bit 1 of b is 0, then bit 2
of c should be 1; if bit 1 of b is 1, then bit 2 of c should be 0), without changing any other
bits of c.

We use the property that x XOR 1 = ~x to flip the values of bits 7, 3 and 1.
xori $t0, $s1, 0b10001010

Zero every bit except 7, 3 and 1.
andi $t0, $t0, 0b10001010

Shift left one position: bit 7 goes to bit 8, bit 3 goes to bit 4, bit 1 goes to bit 2, bit 1 becomes 0.
sll $t0, $t0, 1

Now, to clear bits 8, 4 and 2 of c,
we need the mask 0b1111111111111111 1111111011101011
lui $t1, 0b1111111111111111
ori $t1, $t1, 0b1111111011101011
and $s2, $s2, $t1

and we OR the new c with $t0
or $s2, $s2, $t0

AY2024/25 Semester 1 - 6 of 7 - CS2100 Tutorial #2 Answers

3. MIPS Arithmetic

Write the following in MIPS Assembly, using as few instructions as possible. You may rewrite
the equations if necessary to minimize instructions.

In all parts you can assume that integer variables a, b, c and d are mapped to registers $s0, $s1,
$s2 and $s3 respectively. Each part is independent of the others.

(a) c = a + b;

(b) d = a + b – c;
(c) c = 2b + (a – 2);

(d) d = 6a + 3(b – 2c);

Answers

(a) c = a + b;

add $s2, $s0, $s1

(b) d = a + b – c;
add $s3, $s0, $s1 # d = a + b
sub $s3, $s3, $s2 # d = (a + b) - c

(c) c = 2b + (a – 2);

add $s2, $s1, $s1 # c = 2b (alternatively, do a shift left 1 bit)
addi $t0, $s0, -2 # $t0 = a - 2
add $s2, $s2, $t0 # c = 2b + (a – 2)

(d) d = 6a + 3(b – 2c);

To tutors: Other solutions possible.
Rewrite:
d = 6a + 3b – 6c
 = 3(2a + b – 2c)
 = 3(2a – 2c + b)
 = 3(2(a – c) + b)

sub $t0, $s0, $s2 # t0 = a – c
sll $t0, $t0, 1 # t0 = 2(a – c)
add $t0, $t0, $s1 # t0 = 2(a – c) + b
sll $t1, $t0, 2 # t1 = 4(2(a – c) + b)
sub $s3, $t1, $t0 # d = 3(2(a – c) + b)

AY2024/25 Semester 1 - 7 of 7 - CS2100 Tutorial #2 Answers

4. [AY2013/14 Semester 2 Exam]
The mysterious MIPS code below assumes that $s0 is a 31-bit binary sequence, i.e. the MSB
(most significant bit) of $s0 is assumed to be zero at the start of the code.

(a) For each of the following initial values in register $s0 at the beginning of the code, give the

hexadecimal value of the content in register $s0 at the end of the code.
(i) Decimal value 31.
(ii) Hexadecimal value 0x0AAAAAAA.

(b) Explain the purpose of the code in one sentence.

Answers:

(a) (i) $s0 = 0x8000 001F.
(ii) $s0 = 0x0AAA AAAA.

(b) The code sets bit 31 of $s0 to 1 if there are odd number of ‘1’ in $s0 initially, or 0 if there
are even number of ‘1’. (This is called even parity bit scheme.)

 add $t0, $s0, $zero # make a copy of $s0 in $t0
 lui $t1, 0x8000
lp: beq $t0, $zero, e
 andi $t2, $t0, 1
 beq $t2, $zero, s
 xor $s0, $s0, $t1
s: srl $t0, $t0, 1
 j lp
e:

