(CS2100 Computer Organization

Tutorial #5: Control

30 September — 4 October 2024

1. We will be using what was learnt in the datapath and control lectures for this tutorial. You are given
the following 3 MIPS instructions (same as in the datapath tutorial):

(a) beq $1, $3, 12
(b) 1w $24, 0($15)
(c) sub $25, $20, $5

For each of these instruction, fill in the corresponding elements of the tables given below. The first table
contains the various datapath elements while second contains the control elements. Use the notation
$5 to represent register number 5, [$5] to represent the content of register number 5 and Mem(X) to
represent the memory data at address X. Also indicate the value of PC after the instruction is executed.

Registers File ALU Data Memory
RR1 | RR2 | WR | WD | Oprl | Opr2 | Address | Write Data

RegDst | RegWrite | ALUSrc | MemRead | MemWrite | MemToReg | Branch | ALUop | ALUcontrol

2. Given below are the resource latencies of the various hardware components (ps = picoseconds = 1072
seconds)

Inst-Mem | Adder | MUX | ALU | Reg-File | Data-Mem | Control / ALU- | Left-shift/ Sign-
control Extend/ AND

400ps | 100ps | 30ps | 120ps | 200ps 350ps 100ps 20ps

Give the estimated latencies for the following MIPS instructions:

(a) SUB instruction (e.g. sub $25, $20, $5)
(b) LW instruction (e.g. 1w $24, 0($15))

What do you think the cycle time should be for this particular processor implementation?

Hint: First, you need to find out the critical path of an instruction, i.e. the path that takes the longest
time to complete. Note that there could be several parallel paths that work more or less simultaneously.

3. We can use software (specifically, C in our case) to describe hardware and its functions. First, we need
some preliminaries. There is a header file in C, called stdint.h, introduced by the C'99 standard, that
allows programmers to specify the exact bit widths of integers. Among other things, it introduces the
data types int8_t, intl6_t, int32_t, int64_t, uint8_t, uintl6_t, uint32_t, and uint64_t for
signed 8, 16, 32, and 64 bit integers and unsigned 8, 16, 32, and 64 bit integers, respectively. In hardware
description languages (like Verilog and VHDL — but not C), arbitrarily lengths are also supported. For
the purpose of this tutorial, let’s assume there is a int<N>_t and uint<N>_t type in C that also supports
arbitrary length N signed and unsigned integers. As with int8_t etc, we shall trust that the compiler
will “do the right thing” such as selecting the right assembly instructions for the operations required.
Note that (just as a convention) N > 1. If N = 1, we will use the bool (Boolean) data type instead.
Let us start with some of the components of the CPU. As an example, we can describe the instruction
memory as an array:

uint32_t instruction memory[10737418241];

AY2024/25 Semester 1 Page 1 of 2 Tutorial 5

Yes, the array size is huge but we are only doing a description here. Dealing with this large range in
reality requires the help of hardware and the operating system, which you will gradually discover in
your journey through SoC. Also, for convenience, even though we know that memory is an array of
bytes, we will deal with 32-bits at a time for simplicity since we don’t need to deal with 1b etc.

Now:

(a) Write a C data structure and a function to describe the register file and its operation.

(b) Write a C data structure and a function to describe the data memory and its operation.

4. We will now look at multiplexing (labelled as MUX in the slides). Ideally, we want to use some kind
of template feature to describe it but C does not support templates (C++ does, but that’s another
story!). So show how two-way multiplexors (MUX) of different bit widths can be instantiated using
the macro expansion facility of C. In other words, each call to the macro should yield a C function that
implements a two-way multiplexing function (i.e., “if selection is 0, output is input0, and if selection
is 1, output is inputl) where the inputs and output are of bit width N.

5. Main control is to be implemented by this function (we use pointers to pass multiple values out):

void Control(uint6_t opcode,
bool *_RegDst,
bool *_Branch,
bool *_MemRead,
bool *_MemtoReg,
uint2_t *_ALUOp,
bool *_MemWrite,
bool *_ALUSrc,
bool *_Reglirite) ;

Provide the C code for computing the following signals that would be in this function

(a) RegDst
(b) ALUSrc
(c) MemRead
(d) ALUop

6. Write a C program that will model ALUcontrol

uint4_t ALUcontrol(uint2_t _ALUop, uint6_t _funct);

ALUcontrol | Function
0000 AND
0001 OR
0010 add
0110 sub
0111 slt
1100 NOR

7. Write a C function that will model the behavior of the ALU having the following function prototype:

int32_t ALU(int32_t inO, int32_t inl,
uint4_t ALUcontrol, bool *ALUiszero);

where in0 and inl are the 32-bit inputs, ALUcontrol is the 4-bit ALU control signal, and the outputs
are the ALUiszero bit (passed by pointer) and the 32-bit result.

8. For Fun ®: This question is all about some extra ‘fun’ learning ®. You have heard about the Big-
Endian and the Little- Endian formats for memory storage. Do you know where the terminology comes
from?

AY2024/25 Semester 1 Page 2 of 2 Tutorial 5

